Contents

Preface IX

Part 1 Regenerative Medicine 1

Chapter 1 Fundamental Technological Developments Required for Increased Availability of Tissue Engineering 3
Hideaki Kagami, Hideki Agata, Ryuji Kato, Fumiko Matsuoka and Arinobu Tojo

Part 2 Cells for Regenerative Medicine 21

Chapter 2 Bone and Cartilage from Stem Cells: Growth Optimization and Stabilization of Cell Phenotypes 23
Jan O Gordeladze, Janne E Reseland, Tommy A Karlsen, Rune B Jakobsen, Lars Engebretsen, Ståle P Lyngstad, Isabelle Duroux-Richard, Christian Jorgensen and Jan E Brinchmann

Chapter 3 Mesenchymal Stem Cell-Based Bone Engineering for Bone Regeneration 57
Mohamadreza Baghaban Eslaminejad and Faezeh Faghihi

Chapter 4 From Multipotent Cells to Fully Differentiated Connective Tissue Cells for Regenerative Medicine: Emerging Applications of Mesenchymal Stem Cells 83
Ali Mobasher, Stephen M. Richardson, Judith A. Hoyland, Constanze Buhrmann and Mehdi Shakibaie

Chapter 5 Skeletal Regeneration by Mesenchymal Stem Cells: What Else? 107
José A. Andrades, Silvia Claros, Pedro Jiménez-Palomino, José Mª López - Puertas, Plácido Zamora - Navas, Enrique Guerado, Manuel Monleón, María C. Araque and José Becerra

Chapter 6 Production of Clinical Grade Mesenchymal Stromal Cells 145
Pytlík, Slanař, Stehlík and Matějková
Chapter 7 Adipose-Derived Stem Cells (ASCs) for Tissue Engineering 179
Mathias Tremp, Souzan Salemi, Rita Gobet, Tullio Sulser and Daniel Eberli

Chapter 8 In Vitro Culture Methods of Skin Cells for Optimal Skin Reconstruction by Tissue Engineering 195
Moulin VJ, Mayrand D, Laforce-Lavoie A, Larochelle S and Genest H

Chapter 9 Mesenchymal Stem Cells for Cell Therapy and Tissue Regeneration in Urology 209
Yingai Shi and Yuanyuan Zhang

Chapter 10 Glandular Stem Cells: A New Source for Myocardial Repair? 229
Norbert W. Guldner, Charli Kruse and Hans - H. Sievers

Part 3 Biomaterials for Regenerative Medicine 243

Chapter 11 Preparation and Characterization Urea-Solubilized Sol-Gel Type I Collagen and Its Possible Use in Applications 245
Xin Xiong, Herwig Brunner and Robin Ghosh

Chapter 12 Direct Use of Resorbable Collagen-Based Beads for Cell Delivery in Tissue Engineering and Cell Therapy Applications 261
Veronica Glattauer, Wei-Bor Tsai, Jacinta F. White, Julie Nigro, Tracy A. Tebb, Jerome A. Werkmeister and John A.M. Ramshaw

Chapter 13 Collagen: Applications of a Natural Polymer in Regenerative Medicine 287
Umber Cheema, Michael Ananta and Vivek Mudera

Chapter 14 Tissue-Engineered Extracellular Matrices (ECMs) as Adjuvant Scaffolds for Endovascular Aneurysmal Repair (EVAR) 301
Anthony Callanan, Niall F. Davis, Michael T. Walsh and Tim M. McGloughlin

Chapter 15 Elastin Based Constructs 323
Lisa Nivison-Smith and Anthony Weiss

Chapter 16 The Use of a Hydrogel Matrix as a Cellular Delivery Vehicle in Future Cell-Based Therapies: Biological and Non-Biological Considerations 341
Thomas I. Zarembinski, William P. Tew and Sarah K. Atzet
Chapter 17 Cockle Shell-Based Biocomposite Scaffold for Bone Tissue Engineering 365
Zuki Abu Bakar, Bahaa F. Hussein and Noordin Mohamed Mustapha

Part 4 Advanced Strategies 391

Chapter 18 Bioactive Scaffolds for the Controlled Formation of Complex Skeletal Tissues 393
Sandra Hofmann and Marcos Garcia-Fuentes

Chapter 19 Angiogenesis and Vascularity for Tissue Engineering Applications 433
Remo A. Largo, Venkat M. Ramakrishnan, Martin Ehrbar, Algirdas Ziogas, Jan A. Plock and Daniel Eberli

Chapter 20 The Liver Vascular Bed for Hepatocytes Cell Therapy and Tissue Engineering 449
Yaacov Baruch

Chapter 21 Nano-Coating with Titanium of Glutaraldehyde-Fixed Heart Valve Prostheses Enables a Reduced Immune Response and a Self-Seeding Within Circulation 463
Norbert W. Guldner, Hangörg Zimmermann and Hans-H. Sievers

Chapter 22 Formation of Stable Vascular Networks in Engineered Tissues 477
Bin Jiang and Eric M. Brey

Chapter 23 Tunable Stimuli-Responsive Polymers for Cell Sheet Engineering 503
Nithya Joseph, Anil Kumar P R and TV Kumary

Chapter 24 Gene-Silencing for Treatment of Cardiovascular Diseases 513
A. Nolte, M. Schneider, T. Walker and H. P. Wendel

Chapter 25 Hydrodynamic 3D Culture for Bone Tissue Engineering 527
Daijiang Du, Takashi Ushida and Katsuko Furukawa

Part 5 Cell - Biomaterial Interaction 549

Chapter 26 The Fibrotic Response to Implanted Biomaterials: Implications for Tissue Engineering 551
Barbara Rolfe, Jane Mooney, Bing Zhang, Sani Jahnke, Sarah-Jane Le, Yu-Qian Chau, Qiping Huang, Hao Wang, Gordon Campbell and Julie Campbell
Preface

Tissue Engineering is the first medical therapy where engineered tissues could potentially become fully integrated within the patient, thus offering a permanent cure for many diseases not curable today. The National Science Foundation (NSF) defined Tissue Engineering in 1988 as the “application of the principles and methods of engineering and life sciences toward fundamental understanding of structure-function relationships in normal and pathological mammalian tissues and the development of biological substitutes to restore, maintain or improve tissue function (Shalak and Fox, 1988). Two decades later, Tissue Engineering/Regenerative Medicine is still a growing and exciting field of research applying knowledge of biology, physiology and cell culture techniques to offer new treatment options for patients in need of replacement tissues.

The two prerequisites for the successful engineering of an organ are suitable cells and a biomaterial or extracellular matrix component. A large variety of cells has been proposed for the use in tissue engineering, including pluripotent embryonic stem cells (ESC) with all their ethical controversies, adult stem cells found in most tissues, and committed precursor cells. While the plasticity of ESC offers the potential to grow an entire organ from a single cell source, the clear differentiation of these cells remains challenging. Currently, adult cells seem to have certain advantages regarding rapid clinical translation. Most biomaterials used in Tissue Engineering are based on acellular matrices or polyglycolic acid. Both materials must provide tissue support until the cells produce their own extracellular matrix. Ideally, they degrade thereafter without any toxic byproducts. Over the last years we started to understand the influence of the biomechanical environment allowing these cell-biomaterial composites to unfold their full functional potential. However, many fundamental questions regarding cells and biomaterials remain unanswered.

This book will be of interest to anyone interested in the application of Tissue Engineering. It offers a wide range of topics, including the use of stem cells and adult stem cells, their applications and the development of a tailored biomaterial, highlighting the importance of cell-biomaterial interaction. It offers insights into a
wide variety of cells and biomaterials, explaining the groundwork required to open the avenue to the next generation biotechnology, which is Tissue Engineering.

Finally, I would like to express my appreciation to all authors who have contributed to this book.

Daniel Eberli
University Zurich
Switzerland
Part 1

Regenerative Medicine
1. Introduction

Since the initial excitement surrounding successful clinical studies of skin tissue engineering more than 20 years ago (Gallico et al., 1984), steady progress has been made in enhancing the capabilities of tissue engineering and regenerative medicine. Tissue engineering generally depends upon the use of cultured cells. Since living cells do not fall into any of the existing medical product categories, this has created a great challenge for both regulatory agencies and commercial entities. Although various treatment strategies have been developed, the fundamental technologies and infrastructure to support their widespread adoption are still limited.

In this chapter, attention was focused on fundamental technology development. Three major areas, i.e., introduction of serum-free culture media, development of cell storage technologies and methodological development for quality assurance of the products, are discussed with special reference to future development of tissue engineering.

2. Feasibility of tissue engineering using human bone marrow stromal cells cultivated in serum-free conditions

Tissue engineering is an interdisciplinary approach to regenerate tissue through integration of cell biology and biomaterial/biomedical sciences. The concept of tissue engineering is to regenerate target tissue by mimicking the developmental or regenerative process of that tissue. Thus, it can be considered an ideal therapeutic option for treating various tissue defects. Tissue engineering of skin, cartilage, and bone has already been shown both feasible and effective in several clinical studies, and its efficacy has attracted significant attention from both patients and doctors. However, there are several fundamental technologies which need to be improved before widespread practical use of tissue engineering in hospitals or clinics. In this chapter, the current status of cell culture media used for clinical tissue engineering and the need for the development of safe and reliable serum-free cell culture media will be discussed with special reference to bone tissue engineering.
Patients who lose healthy bone tissue as a result of inflammation or trauma need bone regenerative/reconstructive surgery in order to recover the function of the lost bone. To regenerate the lost bone tissue, autologous bone grafting is the current gold standard, though this technique is a great burden for patients because transplantable autologous bone must be harvested from a healthy site, which causes donor site morbidity and pain. Artificial bone substitutes have been developed as alternatives to autologous bone, though bone regeneration with them is inefficient because they lack osteo-inductive properties. Accordingly, tissue engineering of bone (bone tissue engineering) has attracted significant interest because it is considered less invasive than autologous bone grafting and more efficient than artificial bone substitutes. In fact, cell-based bone tissue engineering which utilizes cells, scaffolds, and bioactive molecules has been shown even more effective than artificial bone substitute in both basic and clinical studies.

For cell-based bone tissue engineering, various tissues derived cells are utilized since osteogenic cells can be harvested from bone marrow, periosteum, and adipose tissue, though recent studies indicate that bone marrow stromal cells (BMSCs, bone marrow derived multipotent mesenchymal stromal cells, or mesenchymal stem cells) are the most reliable cell source because of their superior osteogenic ability (Hayashi et al., 2008). However, it is difficult to obtain adequate numbers of transplantable BMSCs from bone marrow aspirates, as they are rare in the bone marrow (less than 0.01% of marrow cells) (Montzka et al., 2010). Therefore, ex vivo expansion of BMSCs is required to obtain a sufficient number of transplantable cells. Since BMSCs require several kinds of supportive factors for their growth, it is standard practice to use fetal bovine serum (FBS), while autologous human serum (HS) and pooled allogeneic HS have also been used. It has been suggested that FBS may not be favorable for clinical applications due to the possible risk of contamination (prions, viruses, zoonosis) or immunological reactions against xenogeneic serum antigens (Agata et al., 2009). Although serious secondary effects of transplanted cells that were cultured in the presence of FBS have not been reported to date, a previous clinical study that utilized BMSCs cultivated in FBS-supplemented media for the treatment of osteogenesis imperfecta showed a 150-fold increase in antibody titer against FBS in the sera of one patient who received BMSCs infusions (Horwitz et al., 2002). Theoretically, use of autologous HS could eliminate the risks of disease transmissions and immune reactions. However, it is not always possible to obtain a sufficient amount of autologous HS for ex vivo expansion of BMSCs. In fact, over 400 mL of peripheral blood is usually required to obtain 200 mL of autologous HS, which is only sufficient to support the growth of BMSCs for a few passages. Therefore, collection of a sufficient amount of autologous HS is a considerable burden for anaemic patients as well as for healthy female patients with a low body weight. Use of pooled allogeneic HS cannot overcome this problem because it has been shown that allogeneic HS does not fully support the growth of BMSCs (Kuznetsov et al., 2000). Furthermore, even when a sufficient amount of autologous HS can be obtained from each patient, the constituents of individual HS could vary, which might lead to variations of cell culture outcome. Thus, it is desirable to develop efficient and safe serum-free culture media and eventually serum-independent cell expansion protocols for tissue engineering.

Recently, several companies have launched complete serum-free culture media that can support the growth of human mesenchymal stem cells without the addition of sera (Table 1). Although the number of studies that have investigated the potential of these serum-free media is still limited, it has been suggested that these serum-free media can support the
growth of human somatic (postnatal/tissue) stem cells even more efficiently than conventional serum-based media (Lindroos et al., 2009, Ishikawa et al., 2009, Hartmann et al., 2010). In support of this conclusion, our previous study of human BMSCs showed that the efficacy of cell growth was greater in StemPro® SFM (Invitrogen, Carlsbad, California, U.S.A.) than FBS-containing medium (Agata et al., 2009). Similar findings have been reported with MesenCult®-XF (STEMCELL TECHNOLOGIES, Vancouver, BC, Canada), STK2® (DS Pharma Biomedical Co., Ltd., Osaka, Japan), and the xenogenic-free (xeno-free) version of StemPro® SFM, all of which have been developed for xeno-free as well as serum-free cultivation of human somatic stem cells (Lindroos et al., 2009, Ishikawa et al., 2009, Hartmann et al., 2010). These data indicate that currently available xeno-free, serum-free media may have the potential to replace conventional serum-based media in clinical tissue engineering, though further basic studies are required to ensure its safety and efficacy. To develop a protocol for bone tissue engineering with serum-free media, we now discuss current findings regarding the character of serum-free expanded cells.

<table>
<thead>
<tr>
<th>Name of the medium</th>
<th>Company (City, Country)</th>
<th>Of note</th>
<th>In vitro osteogenic potential</th>
<th>In vivo osteogenic potential</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>StemPro SFM</td>
<td>Invitrogen (Carlsbad, California, U.S.A.)</td>
<td>Quantitative alkaline phosphatase (ALP) assay</td>
<td>Ectopic bone formation</td>
<td>Agata et al., 2009,</td>
<td></td>
</tr>
<tr>
<td>XenoFree</td>
<td>Invitrogen (Carlsbad, California, U.S.A.)</td>
<td>XenoFree</td>
<td>Quantitative ALP assay, ALP staining</td>
<td>?</td>
<td>Lindroos et al, 2009</td>
</tr>
<tr>
<td>MesenCult-XF</td>
<td>STEMCELL TECHNOLOGIES (Vancouver, BC, Canada)</td>
<td>XenoFree</td>
<td>Alizarin red staining</td>
<td>?</td>
<td>Hartmann et al, 2010</td>
</tr>
<tr>
<td>STK2</td>
<td>DS Pharma Biomedical Co., Ltd. (Osaka, Japan)</td>
<td>XenoFree</td>
<td>Alizarin red staining</td>
<td>?</td>
<td>Ishikawa et al., 2009</td>
</tr>
</tbody>
</table>

Table 1. List of currently available commercial serum-free media and the osteogenic ability of postnatal stem cells cultivated in each product

Since the type of expansion medium used in primary culture may affect the viability and type of cell population generated, it is important to compare the cell populations grown in serum-free and serum-containing medium. For this purpose, Lindroos et al. investigated cell surface marker expression by cells cultured in FBS- or HS-containing media and those cultured in serum-free media using human adipose stem cells. They reported that the expression profiles of examined cell surface antigens were not statistically different (Lindroos et al., 2009). Our previous study investigated cell surface marker expression by human BMSCs cultured in serum-free medium. It also showed that the expression profiles of most of the examined antigens were comparable in both serum-free and serum-containing groups, though there were some differences in the expression of CD105 and CD146 (Agata et al., 2009). Since the mean fluorescence intensity of the CD105 antigen was stronger in serum-free expanded BMSCs, it is possible that a larger population of CD105-positive cells was obtained by growth in serum-free medium. In contrast, the CD146-positive fraction was more evident in cells cultured in serum-based medium and only a limited number of cells were positive for CD146 in the serum-free group (Agata et al., 2009). It is not clear whether serum-free conditions alter the expression of both of these surface markers or whether the conditions selectively support the growth of the CD105positive...
CD146^{dim} population. Nonetheless, cells grown in serum-free media do appear to be different from those grown in serum-containing media, and the information regarding BMSCs grown in serum-containing media may not be used as a reference. Therefore, the feasibility of bone tissue engineering with serum-free expanded BMSCs should be independently investigated from the beginning, though there have already been several clinical trials to show the safety and efficacy of bone tissue engineering with BMSCs grown in serum-containing media.

One of the most important things that should be assured for use in a clinical setting is that transplanted BMSCs do not form tumors in the recipient following transplantation. Since our previous study showed that transplanted BMSCs grown in serum-free medium did not form tumors in nude mice (Agata et al., 2009), it might be possible that BMSCs expanded in serum-free medium are as safe as those expanded in serum-containing medium. However, further studies are required to confirm their safety because few studies have transplanted serum-free expanded somatic stem cells. Together with cell transplantation analyses, genomic and chromosomal stabilities must be analyzed, because these data can support the safety of serum-free expanded BMSCs.

In addition to confirming the safety of such transplants, assurance of the osteogenic differentiation ability of transplanted BMSCs is important in clinical bone tissue engineering. BMSCs grown in serum-containing media are known to differentiate into the osteogenic lineage when they are cultured in osteogenic induction medium (serum-containing media supplemented with dexamethasone, ascorbic acid, and β-glycerophosphate). However, it was still necessary to determine whether somatic stem cells grown in serum-free media would behave similarly in the presence of the same osteogenic components. To date, adipose stem cells, umbilical cord tissue-derived mesenchymal stem cells, and BMSCs those grown in serum-free media have been shown to differentiate into osteogenic cells in the conventional induction medium (Lindroos et al., 2009, Ishikawa et al., 2009, Hartmann et al., 2010). However, it remains unknown whether conventional osteogenic induction medium is optimal for their differentiation, because some of the manufacturers recommend a specially formulated kit for osteogenic induction of serum-free expanded cells. Therefore, we explored osteogenic induction of BMSCs expanded in serum-free medium, using both a conventional osteogenic induction medium and the commercially supplied osteogenesis kit (Agata et al., 2009). Results of alkaline phosphatase (ALP) assays showed that both treatments were able to induce osteogenic differentiation of serum-free expanded BMSCs, though the increase of ALP activity was more rapid with the osteogenesis kit (Fig. 1A). We also performed in vivo transplantation experiments to investigate possible differences in bone forming abilities between cells grown in the two media. As shown in Figure 1B - 1E, cells treated with both osteogenic medium and the osteogenesis kit were able to form bone in vivo, and there was no significant difference in the efficacy of bone formation (Fig. 1B, 1C: osteogenic medium; Fig. 1D, E: osteogenesis kit). These data indicate that bone tissue engineering with serum-free expanded BMSCs can be achieved with either the conventional osteogenic induction medium or the osteogenesis kit. However, these treatments may not be ideal for induction of osteogenic differentiation of serum-free expanded BMSCs, because both media (even the commercially supplied kit) contain some serum-derived components. Therefore, to enhance the safety of clinical bone tissue engineering, a completely serum-free osteogenic induction media should be developed.
Collectively, these data indicate that bone tissue engineering with BMSCs expanded in currently available commercial serum-free media is feasible, though further studies regarding the characteristics of the cells and the safety of serum-free expanded cells are required. In addition, further improvements in serum-free media are desirable because currently available xeno-free, serum-free media contain allogeneic human proteins, which may cause unknown disease-transmissions and immune reactions. Furthermore, related products for serum-free media such as cell culture dish coating materials, which are required for the efficient adhesion and proliferation of primary culture cells in serum-free culture system, should also be improved because no allogeneic-free materials are currently available.

3. Cell storage technologies

Cell storage technologies are essential for efficient, safe, and widespread use of tissue engineering. Storage technologies for cells and tissue-engineered products are required for their timely and efficient distribution. Furthermore, storage of stem cells (stem cell banking) is expected as a reservoir of stem cells for future use and also for public cell banking. Currently, cryopreservation is the most reliable and established technology to store tissues and cells. However, some novel technologies such as freeze dry technology have been
investigated. In this chapter, we focus on the characteristic features of tissue-engineered products for cryopreservation and recent developments in storage technologies. Furthermore, potential future applications of stem cell banking are discussed.

3.1 Storage of tissue-engineered products
The storage of tissue-engineered products is an attractive target for technological development. Since tissue-engineered products usually consist of living cells, technical issues include the limited shelf life of the cells and the use of specialized conditions for transportation. Without storage, treatment with cells requires timely harvesting from the donor, which significantly affects the availability of tissue-engineered products. If the tissue-engineered products can be used as off-the-shelf products such as bioartificial bone substitutes, it would significantly enhance the adoption of this alternative.

3.1.1 Cryopreservation of tissue-engineered products
Currently, cryopreservation is the only available strategy for the storage of tissue-engineered products. However, tissue-engineered products usually consist of multiple layers of cells and, in most cases, the cells are seeded on scaffold made of biomaterials, which complicates the development of efficient freezing storage protocols (Pancrazio et al., 2007). Furthermore, the scale-up of cryopreservation procedures from the cellular level to a macroscopic tissue scale introduces new problems related to heat and mass transfer phenomena in larger systems (Karlsson and Toner, 1996). Although it has been shown that frozen storage is feasible for some of the tissue-engineered products such as bone (Kofron et al., 2003), it is more difficult than that for isolated cells and requires special considerations. Water transport processes may cause difficulties for tissue-scale freezing. While cells at the surface layer would respond to freeze-induced osmotic changes much like cells in suspension, interior cells would dehydrate as a response to the increased intracellular tonicity in the dehydrate surface layers. Accordingly, interior cells dehydrate more slowly than surface cells, which may affect their survival (Karlsson and Toner, 1996). Heat transport limitation in larger tissue may also affect survival. Due to the macroscopic size of tissue-engineered products and its finite thermal conductivity, there may be large thermal gradients from the surface to the interior of the samples. The presence of a thermal gradient during cooling and warming phases makes it difficult to choose optimal temperature change protocols for both surface and interior cells. Moreover, osmotic effects (water movement from inside-unfrozen cells to outside-frozen cells) during cooling, reduces cell survival. Accordingly, it may not be possible to recover full viability throughout the tissue (Karlsson and Toner, 1996).

One of the key decisions in achieving successful freezing of tissue-engineered products is the choice of cryoprotectant. Cryoprotectants minimize damage caused by ice crystal formation and should induce an amorphous state, rather than ice crystals during the cooling and warming phases. Although the use of cryoprotectants is mandatory, currently available reagents are cytotoxic to some extent. Since tissue-engineered products are larger than isolated cells, longer incubation times with cryoprotectant are necessary which may result in a lower survival rate. On the other hand, short incubation times may not allow enough cryoprotectant to penetrate relatively thick tissue-engineered products and cause ice crystallization and cell death in internal layers. The pre-incubation time used for penetration of cryoprotectant should balance damage caused by toxicity and freezing/warming.
3.1.2 Technology development for the storage of tissue-engineered products

Two major approaches to cryopreservation are known, i.e., conventional freeze-thaw procedures and vitrification, which is defined as a glass-like solidification (Karlsson & Toner, 1996). While freeze-thaw procedures minimize the probability of intracellular ice formation, vitrification attempts to prevent ice formation throughout the entire sample during the cooling and warming process (Kuleshova et al., 2007). Recently, the potential of vitrification has been tested for tissue-engineered constructs. Since tissue-engineered products consist of multicellular layers and often include biomaterials with varying coefficients of expansion compared with cells, cryopreservation using conventional freeze-thaw procedures with slow cooling rates has achieved limited success. Accordingly, vitrification could be an attractive alternative technology.

Vitrification has been investigated for tissue-engineered bone and blood vessels. Liu & McGrath (2003) explored the potential of vitrification for the cryopreservation of tissue-engineered bone constructs consisting of a hydroxyapatite scaffold-cell complex. Cell survival was 92.0% for suspended cells and 43.0% for attached cells. In terms of tissue-engineered blood vessel constructs, the effects of vitrification and conventional cryopreservation were compared (Elder et al., 2005). Collagen-based vascular constructs were used as models in this study. Morphological changes associated with ice formation were visible within tissues preserved using traditional cryopreservation but not in tissue preserved using vitrification. The metabolic assay results indicated that vitrified tissue had viability similar to fresh controls. More recent study with tissue-engineered blood vessels using polyglycolic acid scaffold showed that ice formation in tissue-engineered blood vessels was negligible in the vitrified specimens but extensive (68.3 ± 4.5% of vessel area) in the extracellular matrix of frozen specimens. The vitrified tissue had a viability similar to fresh controls and the contractility results for vitrified samples were >82.7% of fresh controls but markedly reduced in the frozen samples (10.7% for fresh controls) (Dahl et al., 2006). Vitrification is a feasible storage method for tissue-engineered blood vessel constructs, and their successful storage brings these constructs one step closer to clinical utility. Although it is a promising technique, higher concentration of cryoprotectant should be used, which could potentially damage the cells. Accordingly, it is still technically difficult and its utility for tissue-engineered products remains to be elucidated.

One of the most awaited technologies for the preservation of tissue-engineered product is long-term unfrozen storage (more specifically, dry storage) at ambient temperature. This approach allows storage without dependence on expensive freezers or liquid nitrogen, which require daily maintenance. This “off-the-shelf” availability and low cost should facilitate the usage of tissue-engineered products. Unfortunately, this is not yet a reality. However, many organisms can undergo a phenomenon called anhydrobiosis to survive in a completely dehydrated state for an extended time and resume activity upon rehydration (Crowe et al., 2002). The sugar trehalose is found at high concentrations in many anhydrobiotic organisms. Thus, the addition of trehalose is considered a key factor in achieving freeze-dried storage. In mammalian cells, freeze-drying of platelets was reported using trehalose (Crowe et al., 2005). Although recovered platelets were strongly attenuated, the survival rate exceeded 90%. Drying of nucleated cells is apparently more challenging. However, the addition of p29, a small α-crystallin stress protein, together with trehalose showed increased resistance to dryness in 293 cells (Ma et al., 2005). Although “off-the-shelf”
tissue-engineered products stored at ambient temperature are not available, the steady progress of research in this area may provide a functional protocol at some point in the future.

3.2 Cryopreservation of putative stem/progenitor cells
Storage of putative stem/progenitor cells is also an attractive research target in tissue engineering. Collection of cells for tissue engineering is less invasive than conventional tissue or organ transplantation. However, repetitive collection of cells can stress patients. If the stem/progenitor cells could be stored, it is possible that they could be repeatedly used for future therapy, reducing the burden and the cost to patients. The concept of banking stem/progenitor cells in storage is not new. Stem/progenitor cell populations decrease in size with age (D’Ippolito et al., 1999; Zhou et al., 2008). If the stem/progenitor cells were harvested at an early age and the cells could be stored, it is possible that those cells could be used later in the life of the donor for autologous transplantation. In this chapter, we also focus on cell banking.

3.2.1 Banking of somatic stem/progenitor cells
Currently, one of the most established and widely accepted stem cell bank systems is umbilical cord blood banking. However, the establishment of somatic stem cell bank other than cord blood (non-hematopoietic stem cells) is still underway. The nature of somatic stem/progenitor cells is much different from that of embryonic stem (ES) cells and induced pluripotent stem (iPS) cells. Somatic stem/progenitor cells possess limited ability to differentiate compared with ES cells and iPS cells. Furthermore, accumulating evidence suggests that somatic stem cells may lose their plasticity soon after cultivation is initiated (Sugiura et al., 2004). Thus, expansion and storage of autologous somatic stem cells for personal future use could be impractical, particularly if the cells carry a genetic predisposition for the disease that is being treated. Improved understanding of somatic stem/progenitor cells is required for more varied applications.

3.2.2 Banking of ES cells and iPS cells
Recently, the establishment of “stem cell banks” has been reported in several countries. Those stem cell banks, mostly government-supported, aim to provide a resource for storing, characterising and supplying ethically collected, quality controlled stem cell lines for research and ultimately for treatment (London et al., 2004; Nakamura, 2010). There is no doubt that those stem cell banks can facilitate research in this area and contribute to the availability of those rare resources such as human embryonic stem (ES) cells and somatic stem cells to researchers who do not have access. Recently, production of induced pluripotent stem (iPS) cell lines from human somatic cells has been reported (Nakagawa et al., 2008). Theoretically, it is possible to generate personalized iPS cells for therapeutic use without ethical problems and also immunological rejection, though it may not be practical due to the time and cost required for the production and quality assurance. To overcome this problem, the establishment of HLA-haplotype banking for human iPS cells has been argued (Nakatsuji et al., 2008). A similar idea was originally reported for human ES cell lines (Taylor et al., 2005). HLA-haplotype banking may provide a more efficient and safe alternative. They estimated that only 50 iPS cell lines would be necessary to find a three-locus match for 90.7% of the Japanese population. At present, the safety of iPS cells for
clinical use is the major concern. The development of safe and effective clinical applications with iPS cells would enhance their appeal.

4. Non-invasive image-based cell quality evaluation technology for cell therapy

In clinical tissue engineering, both safety and efficacy requirements must be satisfied. In the production of conventional chemical-based pharmaceutical drugs, the quality and efficacy of the product is guaranteed through adherence to strict regulations. However, cell-based materials, including tissue-engineered products, require different strategies to evaluate their quality.

Conventional cell quality evaluation technologies, such as RT-PCR or immuno-staining, require cell-destruction processing such as cell-lysis or cell-fixations. If the quality of the cells can be evaluated without destruction process, both examined and non-examined cells can be used for therapies. Therefore, the development of such kind of non-invasive cell quality evaluation technologies has been awaited (Takagi, M. 2010).

4.1 Problems in cell therapy and their technological assessment

The safety and efficacy of cellular products, such as human cells, tissues, and cellular and tissue-based products or HCT/P, processed for cell therapy, are currently regulated by individual nations. However, the level and scope of regulation differs greatly among countries. Frequently referred references are Current Good Tissue Practice and 21 Code of Federal Regulations (CFR), Parts 1270 and 1271 of U.S. Food and Drug Administration (FDA) (FDA homepage, 2010).

Commonly, regulations attempt to limit the unique risks associated with cellular products. These regulations focus on the followings: (1) limiting the risk of transmission of communicable disease from donors to recipients, (2) establishing manufacturing practices that minimize the risk of contamination, and (3) requiring an appropriate demonstration of safety and effectiveness for cells and tissues that present greater risks due to their processing or their use. The regulations suggest that there are two major risks associated with HCT/Ps. One is the non-cellular contaminant risk, and the other is the risk from the cells themselves. Regulations have been established to assure sterility and/or the aseptic nature of the cellular product. However, there are still few criteria or regulations to control cell quality. Especially with stem cells, cell quality per se is not covered by licenses or regulations.

Cell quality issues in cell therapy include the health of the cells, and their ability to grow and differentiate as required without risk of tumorigencity. Historically, chromosomal tests have been conventionally used to assess tumorigenic risk. Animal implant tests are commonly used in safety tests for chemical-based pharmaceutical drugs. Biomarker tests, which assess specific tumorigenic marker genes/proteins by RT-PCR or flow cytometry are the most frequently used molecular biological techniques. However, as explained below, the availability of those conventional techniques do not help clinicians overcome the four major problems which inhibit the use of cell therapies. Those problems are as follows.

The most fundamental problem is guaranteeing the non-invasiveness of the engineered cells. Cells prepared for therapeutic use should also be high in viability, since artificial manipulation could trigger cellular abnormalities. Also, autologous cells from a patient are
commonly very limited in number due to the limitations of the source. For safety, fluorescent staining or gene transfer should also be avoided.

The second problem is a need for complete and exhaustive characterization of the engineered cells. In the case of conventional pharmaceuticals, the uniformity of products can be strictly controlled by regulation of production. However, with human cells, strict regulation of processing does not guarantee uniformity of the product since there are huge individual variations. Therefore, sampling does not always assure the quality of total cellular products.

The third problem is the time limitation inherent in sample characterization. A sample undergoing processing should be assessed repeatedly, until the day of therapy to assure the highest level of safety. However, currently utilized assays such as sterilization test take a few weeks to show the safety properties of cell-products.

The fourth and final problem is instability of the cell quality throughout the culture process. Accordingly, the cell quality of the cell-based products should be assessed just before operation, though conventional evaluation techniques require a few days or even weeks for the assessment of cell-products.

Here, we introduce image-based cell quality prediction technique which might be able to overcome all the problems listed above. Image-based cell quality prediction enables non-invasive, complete, on-time, and predictive evaluation of cells.

Image cytometry is an exciting new area in cell research (Kim, JS. et al., 2010) and could support cell quality evaluation of tissue-engineered products. Given the advances in hardware and software, there are commercially available analysis systems for image cytometry, such as the IN Cell Analyzer (GE Healthcare, Chalfont St Giles, Buckinghamshire, United Kingdom) (GE Healthcare home page, 2011). Image cytometry provides exhaustive high content information characterizing intact/fixed cells. It can also provide very detailed data describing the localization or expression of molecules and organelles in cells. However, current image cytometry analysis is based on fluorescence. Although there are many "less-damaging" technologies for fluorescent labelling of cells, they still give some changes to the cells; thus, incompatible to assess patient cells in clinical tissue engineering.

In contrast, there are developing technologies that evaluate/estimate cellular activities by "non-invasive" measurement technologies (Takagi, M. 2010). Takagi reviewed these non-invasive cell imaging technologies, and indicated that cellular activities can be estimated by cellular morphologies. Recent non-invasive technologies have also been applied to the cell quality evaluation of three dimensionally cultured tissue engineering products (Kino-okka et al., 2008).

Here, we review some important aspects of basic image analysis strategy, especially designed for “cell quality prediction system” in tissue engineering and cell therapy, and show examples of image-based cell quality prediction technology.

4.2 Basics of cell image analysis for cell quality prediction

For image-based cell quality prediction, there are four major steps (Fig. 2): (1) image data collection, (2) image processing, (3) experimental data collection, and (4) data analysis. By adding a fifth step, (5) Prediction, conventional correlation analysis (in-sample analysis) is extended to achieve predictive performance (out-of sample analysis) for the evaluation of new samples.
4.2.1 Image data collection
To assess cellular quality by digital imagery, a large number of detailed images should be collected. There are reports of various types of cellular images applied to non-invasive image analysis, such as phase-contrast microscopy, differential interference contrast microscopy, light-field microscopy, phase-shifting scanning confocal laser microscopy, etc. In our laboratory, phase contrast microscopic images are obtained by BioStation CT (Nikon Corporation, Tokyo, Japan), a fully-automatic cell monitoring system.

4.2.2 Image processing
After collecting data, raw images can be processed by image processing software, such as ImageJ, CellProfiler, Scion Image, Metamorph, CellClassifier, etc. The image processing scheme for cell image analyses combines (1) binarization, (2) noise reduction, and (3) object analysis.

There is no gold standard threshold for image analysis. Based on the type of images, different processing filters and orders should be examined to gain the best processing result.

For the analysis, object analysis is the most informative and essential process, that is the conversion of cellular images into numerical morphological parameters. The objects in the images that correspond to cells are individually labelled and their morphological parameters are measured. Although there are some variations in morphological parameters calculated by software, the basic parameters are length, breadth, area, perimeter, centroid, inner/outer radius, and area of holes of cells.

4.2.3 Experimental data collection
To find out the correlation between the cellular morphology and cell quality, cellular images should be compared with the data from biological experimental. Therefore, the samples are evaluated by conventional biological techniques after the image acquisition.
4.2.4 Data analysis
Choosing the best approach to data analysis depends on the goal. Bioinformatics, the computational and statistical science that analyzes data from molecular biology, offers many effective solutions for the analysis of image data and biological experimental data. If the aim is evaluation of cell quality, regression analysis is an effective solution. Regression analysis could be easily introduced in laboratories by commercially available statistical software, such as SPSS. Free statistical programming platform “R” and BioConductor (R Project homepage, 2011) provide appropriate applications.

The basic strategy for image-based cell quality prediction is to select the proper regression type and construct a model by using a dataset containing both morphological data and experimental data. In the regression analysis, the algorithm searches for the best mathematical function (“the model”) that can explain the correlation between a change in morphological data (input data) and biological data (output data). Hence, once a model that links input and output data with good accuracy has been established, future results could be predicted using image data alone. This is analogous to arriving at a prognosis using gene expression from microarray studies. SPSS (IBM, New York, U.S.A.) and the R platform provide multiple optional functions for parameter selection.

4.2.5 Prediction
Prediction is the final process for practical image-based cell quality assessment. The prediction process is similar to the process of data analysis. Briefly, after the completion of regression analysis, the resultant model can function as a "prediction model". However, compared to the analytic process that uses all data (known as “in-sample analysis”), partitioned data are separately used for “model construction” and “model test” (known as “out-of-sample analysis”) for evaluating the generalization performance. In practice, the total data are commonly partitioned into training data and test data. Using the regression model constructed only with the training data, the error rate between the actual output values of test data and the predicted values calculated from the input values of test data are compared. When the average error rate for all test data is small, the constructed model could be considered a "reliable model" to use with new data. In such a data model validation process, leave-one-out or several-fold cross validation is commonly used. Since this final process requires the partitioning of total data, the total data pool should be large and varied. When the quantity of data is too small, the constructed model will have limited prediction value with new data. Also, when data variations are very biased to certain conditions, such as with only one lot of cells, the constructed model may perform well for the cell lot examined, but would not work with new cell lots.

4.3 A prediction system based on cell image analysis which supports clinical tissue engineering
Here, we introduce practical examples of non-invasive cell quality prediction to support clinical tissue engineering.

4.3.1 Prediction of cell yield
In clinical tissue engineering, cell yield on the day of surgery is a critical factor. Seeding cell density or cell number is commonly critically defined in most cell therapy protocols to assure a certain therapeutic effect. Therefore, the surgery schedule is projected based on the
experienced observation of cellular behaviour in the culture flasks. However, such scheduling is very tentative and there are cases in which the cell yield is insufficient on the scheduled day of surgery.

To overcome such problems in clinical tissue engineering, we tried to predict the future cell yield (14 days later) from early cellular images (images one to three days into the culture period). For image data, we collected total 270 phase contrast microscopic images (4x) of cultured primary dermal fibroblasts, obtained from 10 healthy volunteers (3 males, 7 females, 29 - 72 years old). Informed consent was obtained according to a protocol approved by the ethics committee of Nagoya University Hospital. Biological data (cell growth rate) within 14 days was obtained by manual cell count. All cells were prepared using passage three or four from the primary expansion in modified Eagle’s medium (DMEM) containing 10% FBS at 37°C in the presence of 5% CO2. A schematic image is provided in Fig. 3.

Fig. 3. Schematic diagram of cell yield prediction

The cell attachment rates and growth curves differed greatly among individuals (data not shown). However, by multiple-regression analysis (MRA) with parameter selection, the predicted growth rates had very small error rates compared to the actual growth rates (Fig. 4). Among 120 parameters extracted from the image data, three parameters, such as (P1) change rate of the variation of elliptical rate (1st day to 3rd day), (P2) Size of the inner radius on the third day, and (P3) cell number on the first day, were found to be the best combination of cell culture parameters to predict future cell yield (average squared error = 0.14) (Fig. 4C). It is interesting that other parameters, intentionally selected by cell culture experts badly correlated with the cell yield (Fig. 5). By comparing all the data, we arrived at three conclusions: (1) morphological cell information is informative for cell growth prediction, (2) objectively selected parameters are more effective in cell growth prediction, and (3) multiple combinational parameters work better than a single parameter in cell growth prediction.
Fig. 4. Accuracy of cell yield prediction models. (A) one-parameter prediction model (P1 only), (B) two-parameter prediction model (P1 and P2), (C) three-parameter prediction model (P1, P2, P3). P1, change rate of the variation of elliptical rate (first day to third day); P2, size of the inner radius on the third day; P3, cell number on first day.

Fig. 5. Correlation plot with the image-derived parameter selected by cell culture experts. (A) Correlation with area of viable cells after 24 h, (B) Correlation with total cell growth rate (day three/day one).

4.3.2 Predicting the level of osteogenic differentiation

In stem cell therapy for bone regeneration, the extent of differentiation critically affects the in vivo bone formation after implantation. However, good early markers that predict the future differentiation level of cells have been unavailable. If the differentiation level of cells could be predicted in advance, scheduling of surgery could be set to optimize therapeutic outcome.

As a prediction model of cell differentiation ability, we attempted to predict the alkaline phosphatase (ALP) activity of human mesenchymal stem cells (hMSCs). For image data, we collected 1,170 phase contrast microscopic images (4x) of cultured commercial hMSCs (three lots; 20 years old male, 22 year old male, and 19 year old male). Cells at the same passage number were cultured in the differentiation medium (Agata et al., 2009) at 37°C in the presence of 5% CO₂. For biological phenomenon data, we collected the ALP activity of all
the samples using the method described previously (Agata et al., 2009). We compared the two groups of induction positives and negatives. The protocol is described in Fig. 6.

![Fig. 6. Schematic diagram of osteogenic differentiation prediction](image)

Fig. 6. Schematic diagram of osteogenic differentiation prediction

![Fig. 7. Prediction accuracy of osteogenic differentiation model](image)

Fig. 7. Prediction accuracy of osteogenic differentiation model

By using ten morphological parameters selected by MRA, we found that ALP activity could be predicted with high accuracy (Fig. 7). Although there were slight differences in differentiation ability among the examined MSCs, the regression model could be extended to respond to any MSCs. In other words, patient differences could be compensated for by such a model-based analysis.

5. Conclusions

Despite rapid progress in treatment technologies using tissue engineering and regenerative medicine, those novel therapies have yet to be extended to standard medical practice and only limited numbers of patients have thus far benefited from these less invasive and
potentially efficient therapies. The development of the technologies described here should facilitate general medical acceptance of tissue engineering. Increased availability of tissue engineering should contribute to the quality of life of patients with a wide range of diseases.

6. Acknowledgments

This work was supported in part by a grant for “Research on Human Genome and Tissue Engineering” from the Ministry of Health, Labor and Welfare of Japan, and Grant for Industrial Technology Research (Financial support to young researchers, 09C46036a) contracted with New Energy and Industrial Technology Development Organization (NEDO).

7. References

Hayashi et al. (2008). Comparison of osteogenic ability of rat mesenchymal stem cells from bone marrow, periosteum, and adipose tissue. *Calcif Tissue Int.*, Vol. 82, No.3, (March 2008), pp. 238-247, ISSN 0171-967X

Horwitz et al. (2002). Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell

Lindroos et al. (2009). Serum-free, xeno-free culture media maintain the proliferation rate and multipotentiality of adipose stem cells in vitro. Cytotherapy, Vol. 11, No. 7, (November 2009), pp 958-972, ISSN 1465-3249

Montzka et al. (2010). Expansion of human bone marrow-derived mesenchymal stromal cells: serum-reduced medium is better than conventional medium. Cytotherapy, Vol. 12, No. 5, (September 2010), pp 587-592, ISSN 1465-3249

Part 2

Cells for Regenerative Medicine
Bone and Cartilage from Stem Cells: Growth Optimalization and Stabilization of Cell Phenotypes

Jan O. Gordeladze et al.*

Department of Medical Biochemistry, Institute of Basic Medical Science, University of Oslo, Norwegian Center for Stem Cell Research, The National Hospital, Oslo, Norway

1. Introduction

Engineered cells replacing tissues should mimic the three-dimensional (3D) structure and reflect the different cell phenotypes exhibited by the lost or damaged tissue (Raimondi 2006; Keung, Healy et al. 2010). The engineered cells should also demonstrate a certain plasticity, i.e. an ability to adapt to the environment, in which they are deposited, reflecting the minute differences in features necessary to rebuild a functional tissue, which is able to renew itself over time (Grad and Salzmann 2009; Ohishi, Chiusaroli et al. 2009; Tare, Kanczler et al. 2010).

Osteoblastic cells in bone need to be able to involve themselves in a remodelling cycle with osteoclasts (Hanada, Hanada et al. 2010; Trouvin and Goeb 2010), which may be recruited from surrounding bone structures, and/or may be furnished as preosteoclasts within the population of osteoblasts. Furthermore, the osteoblasts should be able to undergo a distinct alteration in terms of life-span defined characteristics (Lian and Stein 2003; Lian, Stein et al. 2006; Gordeladze, Reseland et al. 2009), including the transition to osteocytes. Finally, the newly formed engineered tissue does not survive unless it develops a vascular network (Matsumoto, Kuroda et al. 2008; Grellier, Bordenave et al. 2009) furnishing the bone tissue with oxygen, growth factors and nutrients.

Chondrocytes in engineered cartilage should be able to produce an extracellular matrix reflecting the composition, water-binding capacity and mechanical characteristics of true...
hyaline cartilage (Knecht, Vanwanseele et al. 2006; Heinegard 2009; Bertrand, Cromme et al. 2010; Goldring and Goldring 2010). This type of cartilage exhibits certain features, such as hypoxic conditions and chondrocytes demonstrating gradients of gene transcript levels (cell phenotype plasticity) between the juxta-luminal and bone-lining surfaces of a joint (Grimshaw and Mason 2001; Lu, Subramony et al. 2010; Oh, Kim et al. 2010). The features listed above have been extensively described and confirmed in the literature, however, a joint approach to produce well adapting engineered osteoblasts and chondrocytes has hitherto not been the subject of review articles or book chapters. The present outline encompasses a combined literature review of phenomena to take into consideration when engineering such cells from stem cells (SCs): sources of SCs to use (Logeart-Avramoglou, Anagnostou et al. 2005; van Osch, Brittberg et al. 2009), genes or microRNAs to manipulate (Goldring, Tsuchimochi et al. 2006; Betz 2008; Grundberg, Brandstrom et al. 2008; Duggal, Fronsdal et al. 2009; Gordeladze, Djouad et al. 2009; Lin 2009; Granchi, Ochoa et al. 2010; Sun 2010; Herlofsen, Kuchler et al. 2011), selection of gene and microRNA delivery systems (Saraf and Mikos 2006; Phillips, Gersbach et al. 2007), choice of humoral growth factors to facilitate SC differentiation (Shahdadfar, Fronsdal et al. 2005; Boeuf and Richter 2010; van der Kraan, Davidson et al. 2010), selection of appropriate scaffolds to support “asymmetric” SC differentiation (Vinatier, Bouffi et al. 2009; Oh, Kim et al. 2010; Seidi, Ramalingam et al. 2011), combination of stem cell niches and/or co-cultures to ensure organ mimicry reflecting proper cell-cell interactions (Grad and Salzmann 2009; Grellier, Bordenave et al. 2009; Boeuf and Richter 2010; Tare, Kanczler et al. 2010), mechano-stimulation of cells (Kelly and Jacobs 2010; Nowlan, Sharpe et al. 2010), and three-dimensional (3D) organ printing (Williams 2009; Visconti, Kasyanov et al. 2010).

Furthermore, this review also discusses how to stabilize osteoblasts and chondrocytes obtained by differentiation of SCs, i.e. how we can make the subject cells resilient to the detrimental effects of inflammatory cytokines and T-cells (Gordeladze, Reseland et al. 2009; Gruber 2010; Hanada, Hanada et al. 2010; Pacifi 2010), and exosomes shredded from immune cells (Valadi, Ekstrom et al. 2007; Camussi, Deregibus et al. 2010; Zomer, Vendrig et al. 2010).

2. Sources of stem cells for osteoblast and chondrocyte differentiation

Osteoblast differentiation

Bone marrow, which is the natural repository of osteoblasts, is widely used as source for bone engineering. Under appropriate conditions, bone-derived stem cells (bone mesenchymal stem cells = bone MSCs) can differentiate into osteoblasts, chondrocytes, adipocytes, and stromal cells (Javazon, Beggs et al. 2004; Otto and Rao 2004; Logeart-Avramoglou, Anagnostou et al. 2005). The differentiating potency of bone MSCs was enhanced when embedded in diffusion chambers or organ capsules, however, there is now a plethora of scaffolds securing the development of “proper” osteoblasts to produce bone for tissue replacement purposes. The advantage of using bone MSCs is related to the large number of obtainable osteoblasts, their high number of passages before the differentiating potential is lost, and their ability to be stored frozen for a long period. And the default pathway of bone MSCs is the osteogenic pathway (Logeart-Avramoglou, Anagnostou et al. 2005).
During the past 10-12 years, many other stem cell sources with osteogenic potential have been isolated, including blood, adipose tissue, lung, synovium, skeletal muscle and tooth pulp (for review, (Barry and Murphy 2004; Logeart-Avramoglou, Anagnostou et al. 2005; Gordeladze, Reseland et al. 2009; Bodle, Hanson et al. 2011; Levi and Longaker 2011; Witkowska-Zimny and Walenko 2011)). However, it seems that adipose stem cells (ASCs), provided that they are similar to MSCs in terms of surface receptor molecule profile (STRO-1, CD34, CD45, CD117 negative; CD44, CD49 CD29, CD90, CD105, CD106 positive) (Logeart-Avramoglou, Anagnostou et al. 2005; Niemeyer, Krause et al. 2006), may serve as a good source for bone engineering (Bodle, Hanson et al. 2011; Levi and Longaker 2011; Monaco, Bionaz et al. 2011). Irrespective of whether the source encompasses MSCs or ASCs, it seems that “proper” osteoblasts may be obtained if incubation conditions (i.e. the choice of growth factor source) and appropriate scaffolds are employed (Logeart-Avramoglou, Anagnostou et al. 2005; Kanczler and Oreffo 2008; Kwan, Slater et al. 2008; Gordeladze, Reseland et al. 2009; Tiainen, Lyngstadaas et al. 2010; Rahaman, Day et al. 2011; Sabetrasekh, Tiainen et al. 2011).

Chondrocyte differentiation

As for bone engineering, cartilage engineering relies firmly on the use of MSCs and ASCs (van Osch, Brittberg et al. 2009; Boeuf and Richter 2010; O’Sullivan, D’Arcy et al. 2011; Witkowska-Zimny and Walenko 2011). Some other sources, i.e. ectodermal cells like skin and hair follicles, as well as perinatal tissue and umbilical cord blood (Kuhn and Tuan 2010). One article refers to the use of synovial membrane stem cells (SMSCs) and compares their potency for chondrocyte differentiation with MSCs and ASCs (Segawa, Muneta et al. 2009). The criteria for selection of cell source may vary, but the authors focus on the necessity to analyse chondrocytes differentiated from these stem cells and choose the better source depending on how close they resemble the gene expression profile of mature chondrocytes isolated from hyaline cartilage (Segawa, Muneta et al. 2009; Vinatier, Bouffi et al. 2009; Vinatier, Mrugala et al. 2009).

Differentiating MSCs and ASCs produce all the components constituting ECM and represent the cells of choice for engineering articular cartilage. However, adult chondrocytes isolated from various sources like articular cartilage, nasal septum, ribs or ear cartilage (Kafienah, Jakob et al. 2002; Isogai, Kusuhara et al. 2006) produce *de novo* cartilage displaying the characteristics of its original tissue (Isogai, Kusuhara et al. 2006). It is therefore more appropriate to use hyaline cartilage as the preferred source of chondrocytes, and a comparison between different sources of hyaline chondrocytes (nasal, costal, and articular) has shown the superiority of costal and nasal chondrocytes in terms of quantity of cartilage formed after subcutaneous transplantation (Isogai, Kusuhara et al. 2006). One major limit related to the use of chondrocytes, is their instability in monolayer culture resulting in loss of phenotype (i.e. loss of collagen II, aggrecan and superficial zone protein = SZP) (Darling and Athanasiou 2005). Loss of the chondrocytic phenotype is accompanied by a phenotypic shift towards fibroblast like cells, which is characterized by an enhanced expression of collagen I (Schnabel, Marlovits et al. 2002). This dedifferentiation process is reversible, and dedifferentiated chondrocytes arranged in a three-dimensional (3D) lattice may retrieve their differentiated phenotype (Domm, Schunke et al. 2002; Malda, van Blitterswijk et al. 2003). This is especially true for dedifferentiated chondrocytes, having
been "reversed" some 7-10 days before assuming the fibroblast phenotype (Brinchmann et al., unpublished observations).

The use of chondrocytes from osteoarthritic (OA) cartilage has also been contemplated. However, OA chondrocytes are subject to metabolic alterations leading to a low response to inductive environmental factors (Fukui, Purple et al. 2001; Sandell and Aigner 2001). Although chondrocytes derived from OA patients seem to be less appropriate for articular cartilage repair, it has been reported that OA chondrocytes may resume a normal chondrocytic phenotype upon 3D-cultivation in vitro (Tallheden, Bengtsson et al. 2005).

3. Genes and microRNAs as determinants of bone and cartilage quality

Characteristics of transcriptomes

When tissue replacement with the aid of tissue engineering is the ultimate therapeutic goal, it is vital to understand the differentiation process from precursor cells in terms of gene expression. Hence, it is necessary to identify a transcriptome, which is reflecting the “true” osteoblast and chondrocyte phenotypes pertaining to the function and localization of such cells in the skeleton. Many excellent articles have addressed this task over the past 10 years, of which only some are mentioned here (Kulterer, Friedl et al. 2007; Grundberg, Brandstrom et al. 2008; Duggal, Fronsdal et al. 2009; Morsczeck, Schmalz et al. 2009; Sundelacruz and Kaplan 2009; Bernstein, Sticht et al. 2010; Granchi, Ochoa et al. 2010; Piek, Sleumer et al. 2010; Sun, Mauerhan et al. 2010; van der Zande, Walboomers et al. 2010; Herlofsen, Kuchler et al. 2011). Two transcriptomes featuring putative gene markers of osteoblasts and chondrocytes (two each), respectively, will be described in detail.

Grundberg et al. (Grundberg, Brandstrom et al. 2008) used human trabecular osteoblasts stimulated with BMP-2 and dexamethasone for 24 hours. The article refers to genes specific for trabecular bone cells (osteoblasts) and genes up-regulated after 2 and 24 hours incubation with BMP-2 and dexamethasone, as well as genes altered upon 24 hours incubation with dexamethasone alone. Top similarity pathways of cell phenotype modulation (as assessed by Ingenuity®) were the IGF-1-, Leptin-, BMP-2- and Wnt-pathways, indicating a good correlation with the bulk of literature on osteoblast differentiation (Gordeladze, Drevon et al. 2002; Komori 2006; Marie 2008; Gordeladze, Reseland et al. 2009). The second paper on osteoblastogenesis (Granchi, Ochoa et al. 2010) was based on incubation of human MSCs in differentiating medium with dexamethasone for 24 hours, and thereafter in mineralizing medium with dexamethasone for 7 days. The main groups for the classifications of up-regulated genes were characterized by: angiogenesis, apoptosis, bone development, cell communication, cell cycle, embryonal development, TGFβ-signalling, and Wnt-signalling. The cumulative gene lists from these reports constituted the osteoblast transcriptome (188 genes) used as osteoblast reference to evaluate osteoblast differentiation (see paragraph 11. Bone and cartilage engineering revisited).

As for the chondrocytic differentiation, it is referred to the papers of Bernstein et al. (Bernstein, Sticht et al. 2010) and Herlofsen et al. (Herlofsen, Kuchler et al. 2011). Bernstein and co-workers used chondrocytes from articular cartilage and MSCs in an intricate array of manipulations. The cells were incubated in a differentiating medium containing TGFβ3 or control medium without growth factor. Transcriptomes obtained from the cells were
categorized in gene transcripts up-regulated, down-regulated or “unsteady”. The following results were obtained: Genes were classified as belonging to groups designated TGFβ-related, Wnt-pathway, glycans, actin metabolism, integrins/motility, bone development, muscle development, neuronal development, sperm development, and lipid metabolism. Comparisons with published gene ontology (GEO) datasets revealed that 1) MSC differentiation towards the chondrogenic lineage resembled MSC differentiation in mouse embryo limb buds (endochondral differentiation), and 2) an increasing confluence of proliferating MSCs will resemble the pellet situation in a timely delayed manner (transition from proliferation to differentiation). The paper by Herlofsen et al. describes MSCs differentiated to chondrocytes in alginate beads for 21 days in a standard differentiating medium with BMP-2. The following gene transcripts COL1A1, COL2A1, COL10A1, SOX5, SOX6, SOX9, ACAN, COMP, VCAN, MMP13, ALPL, RUNX2, and SOX8 were analysed by Q-PCR for verification of differentiation. However, a similarity search, where the transcripts for COL2A1 (up-regulated upon differentiation) and CXCL12 (down-regulated upon differentiation) was compared with the time-course of other genes (1072 up-regulated, 898 down-regulated). From these exercises, a joint list was compiled, consisting of 261 genes. This cumulative list of genes was used as chondrocyte reference to evaluate chondrocyte differentiation (see paragraph 11. Bone and cartilage engineering revisited).

These are just some examples of transcriptomes characterizing cell phenotypes subsequent to exposure to differentiating conditions in vitro. Since these experiments have been conducted ex vivo, it is reasonable to anticipate that the ultimate transcriptome can only be revealed if factors and/or conditions like cell sources, growth factors (adapted incubation media), scaffolds or organ printing, mechano-stimulation, gene and/or microRNA manipulations, or gene and microRNA delivery systems are all taken into account when a final “tissue engineering” process or algorithm is selected.

Spectrum of microRNAs expressed

MicroRNAs are short (20-24 nt) non-coding single-stranded RNA molecules that play an important role in regulating cellular gene expression. They function at the post-transcriptional level, by binding mRNA molecules (Gordeladze, Djouad et al. 2009; Lin 2009; Beezhold, Castranova et al. 2010). MicroRNAs have been found to play important roles in mediating fundamental biological processes like proliferation and differentiation in a variety of cells within defined tissues types. Recent reports have suggested that microRNAs may play a significant role in bone and cartilage development (Gordeladze, Djouad et al. 2009; Lin 2009; Sun 2010; Karlsen, Shahdadfar et al. 2011).

MicroRNAs suppress target gene translation by binding to the 3'-untranslated region (3'-UTR) of mRNAs, thus repressing translation and/or enhancing mRNA degradation. This requires that the 3'-UTR contains at least one specific 6-7 nt sequence which exhibits at least partial complementarity to a so-called "seed site," located within the 5'-region of the microRNA molecule (Lin 2009; Beezhold, Castranova et al. 2010).

Despite mounting evidence that miRNAs play a significant role in embryonic development and other biological processes, the function of only a handful of miRNAs has been determined thus far. And of these miRNAs, only a small subset has been implicated in cartilage and/or bone development. These are mir-140 (targeting HDAC4), mir-199a and mir-26a (both targeting SMAD1), mir-126 (targeting VCAM1 and HOXA9), mir-125b
(targeting ERBB2), mir-145, and mir-146 (Lin 2009). In a recent review article, Gordeladze et al. summarized reports on microRNA species like mir-29b (targeting HDAC4, TGFβ3, ACVR2A, CTNNBIP1, and DUSP), mir-125b (target not specified), mir-133b and mir-135a (both targeting SMAD5 and RUNX2), and mir-199b (target not specified) somehow being involved in osteochondral development and skeletogenesis (Gordeladze, Djouad et al. 2009). Other microRNAs involved in TF-interactions belong to the microRNA family of mir-23a-27a-24-2 (targeting APC2, RUNX2 and SATB2) (Hassan, Gordon et al. 2010).

Other studies involving differentiation of human mesenchymal stem cells into osteocytes and chondrocytes implicated a different subset of miRNAs. Mir-638 and mir-663 were found to be up-regulated in chondrocytes, while mir-24, let-7a, let-7b, let-7c, mir-138, and mir-320 were associated with osteocyte maturation (Lakshmipathy, Love et al. 2007). We have also found (Gordeladze et al., unpublished observations) that the microRNA species 638 and 663 are up-regulated in chondrocytes as early as 3 days of differentiation from MSCs, but these microRNAs are also heavily up-regulated in Th-17 cells differentiated from CD4+ naive T-cells after 5 days (Yssel et al., unpublished observations). Mir-638 and mir-663 appear to have the following targets in common (JUN, FOSB, SP3, and MYC, all of which are important for osteoblastogenesis). Finally, a recent survey of the literature revealed that several microRNA species (mir-335-5p, mir-27, and mir-29) directly target molecules involved in the Wnt-signalling pathway (Kapinas, Kessler et al. 2009; Kapinas, Kessler et al. 2010; Wang and Xu 2010; Zhang, Tu et al. 2011).

MicroRNAs directly targeting specific gene markers of bone and cartilage structural ECM molecules have not been indisputably identified, however, many microRNAs have been shown to affect the steady state levels of such molecules, though probably indirectly. These microRNAs are mir-34a, mir-675, mir-21, mir-146a (COL2A1) (Yamasaki, Nakasa et al. 2009; Abouheif, Nakasa et al. 2010; Dudek, Lafont et al. 2010; Kongcharoensombat, Nakasa et al. 2010), mir-140 (COL2A1, ACAN) (Miyaki, Nakasa et al. 2009), and mir-29b (also directly targeting COL1A1, COL5A3, AND COL4A2, as evidenced by the use of 3’-UTR reporter assays) (Li, Hassan et al. 2009).

Interestingly, the expression of microRNAs in osteoblasts and chondrocytes seems to be reciprocal, in the sense that the microRNA species highly expressed in chondrocytes are virtually absent in osteoblasts (and vice versa). A series of articles on microRNA expression profiles in osteoblasts grown in a variety of scaffold composite material have recently been published (Annalisa, Furio et al. 2008; Palmieri, Pezzetti et al. 2008; Palmieri, Pezzetti et al. 2008; Palmieri, Pezzetti et al. 2008), however, the microRNA profiles are not overtly compatible with single microRNA studies where proof-of-microRNA-binding has been shown.

The possible role of microRNAs in disease processes like rheumatoid arthritis (RA) and osteoarthritis (OA) has been addressed, and a significant up-regulation of mir-155 and miR-146a in synovial fibroblasts (RASFs) and synovial fluid derived from patients with RA have been documented (Stanczyk, Pedrioli et al. 2008; Duroux-Richard, Presumey et al. 2011). These findings unite the concepts of cell-specific microRNA signatures and microRNA-exchange between cells in the form of exosomes (Valadi, Ekstrom et al. 2007; Zomer, Vendrig et al. 2010). Lastly, predicted polymorphisms in binding sequences for mir-146 in the promoter region of the FGF2 have been found (Lei, Papasian et al. 2011), implicating microRNAs even more closely with development and treatment of disease states.
4. Gene and microRNA manipulations and selection of delivery systems

Osteoblasts and bone engineering

Biologists have identified several bioactive factors being able to induce or support bone generation, including BMPs, TGFβ, IGF-1, FGFs, LIM mineralizing protein-1 (LMP-1), VEGF and caALK2 (activin-receptor like kinase-2, mediating BMP-signalling) (for review, see (Betz 2008)). Delivery systems frequently used are viral vectors, adenoviral vectors, retroviral and lentiviral vectors, adeno-associated vectors (AAV), and non-viral vectors (mostly plasmids). Standard transfer procedures comprise electroporation, lipofection and gene-activated matrices (GAM) (Betz 2008). Other osteogenic factors of interest for gene manipulation are RUNX2, SMADs, DLX3, DLX5, AP-1, and SP7 (osterix) (Marie 2008; Gordeladze, Djouad et al. 2009).

Gene therapy may be based on single genes, however, more successful attempts have been made by using combinations of genes, such as BMP + VEGF, BMP2 + RUNX2, VEGF + RANKL, BMP-2 + IGF-1, and BMP-2 + SMAD8 (Gersbach, Phillips et al. 2007). Another strategy is to deliver the above mentioned osteoinductive growth factors or hormones in a scaffold material to render a “kick-start” in terms of osteoblast function, cell organization and bone building (Fischer, Kolk et al. 2011). Other applications of gene therapy for osteogenesis, such as for periodontal and craniofacial regeneration, have been described elsewhere (Scheller and Krebsbach 2009; Rios, Lin et al. 2011).

Chondrocytes and cartilage engineering

The concepts of gene therapy for cartilage repair have been thoroughly reviewed by Steinert et al. (Steinert, Noth et al. 2008). Approaches mentioned are stimulation of chondrogenic differentiation (using TGFβs, BMPs, WNT, SMADs, SOX9, Brachyury), stimulation of cartilage matrix synthesis and/or cell proliferation (TGFβs, BMPs, IGF-1, PDGF, type 2 Collagen minigene, COMP, GlcAT-1), inhibition of osteogenesis/hypertrophy growth factors (Noggin, Chordin, PTHrP, SMAD6,7), the use of anti-inflammatory agents (IL-1 blockage, TNFα-inhibition, MMP-inhibition), senescence inhibition, and inhibition of apoptosis (Saraf and Mikos 2006; Steinert, Noth et al. 2008). The delivery systems for chondrogenic genes show many common features to the ones described for enhancing osteoblastogenesis (see above) (Saraf and Mikos 2006; Betz 2008).

5. Choice of humoral factors for differentiation purposes

The differentiation of progenitor cells to osteoblasts or chondrocytes in vitro has been conducted in media containing differentiating factors like Calcitriol, Dexamethasone, BMP2, IGF-1, PDGF, EGF, FGFs, TGFβs, HGF, PTH/PTHrP, (Logeart-Avramoglou, Anagnostou et al. 2005; Steinert, Noth et al. 2008; Tilg, Moschen et al. 2008; Gordeladze, Reseland et al. 2009; Boeuf and Richter 2010; Levi and Longaker 2011; Witkowska-Zimny and Walenko 2011). The choice of such factors, either as a single remedy, or in combinations, most certainly will affect cell phenotype acquisition in different ways (Kulterer, Friedl et al. 2007; Grundberg, Brandstrom et al. 2008; Duggal, Fronsdal et al. 2009; Sundelacruz and Kaplan 2009; Bernstein, Sticht et al. 2010; Granchi, Ochoa et al. 2010; Piek, Sleumer et al. 2010; Herlofsen, Kuchler et al. 2011). Thus, the outcome of the differentiation process is not easy to predict.
In vitro differentiation normally requires fetal bovine serum (FBS), however, FBS raises a concern over infections, possible immunological reactions to xenogenic peptides and inorganic compounds (like non-human sialic acid) (Hattori, Nogami et al. 2008). Hence, the use of serum-free incubation media is warranted. It has been shown that MSCs grown in serum free-media will acquire both osteoblast and chondrocyte phenotypes when exposed to EGF and bFGF, stimulating the ERK-pathway (Solmesky, Lefler et al. 2010), and similar results have been obtained by others (Gigout, Buschmann et al. 2009; Felka, Schafer et al. 2010). Waese et al. report on a one-step successful generation of chondrocytes in a serum-free monolayer system (with the addition of TGFβ3 or BMP-4) (Waese and Stanford 2011), and several articles underscore the importance of serum source for optimal differentiation and inhibition of senescence in engineered chondrocytes (Shahdadfar, Fronsdal et al. 2005; Dahl, Duggal et al. 2008; Duggal and Brinchmann 2011). Hence, the combination of factors inducing optimal differentiation and the selection of serum-free media to produce good chondrocytes and osteoblasts for tissue engineering purposes represents a major task to elucidate.

6. Properties of scaffold materials in bone and cartilage engineering

Trauma (including bone fractures and cartilage destruction), cancer metastases, rheumatoid arthritis and osteoarthritis represent a therapeutic challenge, which previously has been approached by implanting autologous tissues (Gordeladze, Reseland et al. 2009; Torroni 2009; Giannoudis and Dinopoulos 2010; Khan, Johnson et al. 2010; Lu, Subramony et al. 2010; Takeda, Nakagawa et al. 2011). The modern approach of using scaffolds as artificial cell- and tissue-supporting material is promising and has been extensively reviewed by Sundelacruz and Kaplan (Sundelacruz and Kaplan 2009). Basically, the choice of scaffold biomaterial and biocompatibility is vital for support of cell proliferation, differentiation, and suitability for implantation in vivo. Secondly, the geometry and architecture is important determinants of support of 3D tissue growth, control of morphology of the growing tissue, support of cell proliferation, and favourisation of cell differentiation into particular lineages. Thirdly, the porosity of the scaffold is important for the support of cell differentiation, recruitment, aggregation, and vascularisation. Furthermore, the mechanical properties, degradation rate, and biochemical stimuli are determinant of the scaffold’s ability to permit new tissue ingrowth, allow remodelling of the ECM formed, match the healing rate of the new tissue, and stimulate progenitor cells to assume a functional and stable cell phenotype. The following scaffolds have been tested in different osteochondral tissue engineering settings: PET, PLDL, PLA, PGA, PLGA, HA, TCP, and silk fibroin (porosity and pore size), HA, TCP, various synthetic polymers and co-polymers, polymer-ceramic composites (pore interconnectivity), natural synthetic polymers, including collagen, silk, PLGA, and PCL (degradation), natural synthetic polymers, bioactive glasses and ceramic material (mechanical strength), and finally PLGA, CaP, TCP, chitosan, HA, collagen, and silk fibroin (incorporation of biochemical signalling).

In order to arrive at the very best system for tissue engineering, large experimental permutations of the above mentioned factors including cell sources, humoral factors and gene therapeutic approaches, should be performed to obtain the better cell phenotype for osteochondral tissue replacement.

However, some recent articles featuring the use of polymeric scaffold structures in osteochondral engineering deserve citation here. Hydrogels incorporating agarose, alginate,
collagen, hyaluronic acid polymer and gelatine have been successfully applied to support stem cell differentiation and 3D-structuring (Vinatier, Bouffi et al. 2009; Vinatier, Mrugala et al. 2009; Hunt and Grover 2010). MSCs embedded in fibrin hydrogel showed superior differentiation to osteoblasts compared to cells grown in monolayers, however, they did not assume a preferred phenotype after 28 days of incubation. Tiainen and co-workers have reported on an ultra-porous titanium oxide (TiO$_2$) scaffold with high compressive strength (above 2.5 MPa at 80-90% porosities) (Tiainen, Lyngstadaas et al. 2010), satisfying criteria for mechano-stimulation and pore size favouring cell differentiation, recruitment, aggregation and vascularisation. Another report on TiO$_2$ confirms its applicability in producing a proper bone replacement material (Sabetrasekh, Tiainen et al. 2011). Rahman et al. used bioactive glass, which, despite its brittleness, showed physical characteristics favouring neo-vascularisation being necessary for the perpetuation of engineered bone, when implanted in vivo (Rahaman, Day et al. 2011). And finally, it should be mentioned that osteoblast-like cells cultured in a bone-mimicking material made of poly-L-lactide + carbon nanotubes + micro-hydroxyapatite differentiated well into proper, bone-forming osteoblasts, as ascertained by genetic profiling (van der Zande, Walboomers et al. 2010).

Sabetrasekh and co-workers showed that Hydroxylprolyl-methyl Cellulose Hydrogel (Histocare™) (Sabetrasekh 2011) supported the differentiation of MSCs and preosteoblasts and cell clusters forming an artificial tissue favouring cell-cell interactions. Duggal et al. (Duggal, Fronsdal et al. 2009) showed that MSCs exposed to high-guluronic tripeptide arginine-glycine-aspartic acid (RDG) alginate scaffolds, facilitating binding to integrin, differentiated well into chondrocytes in the absence of any growth factors. Integrins are extracellular receptors conveying mechano-stimulation to the interior of the cell (Liu, Calderwood et al. 2000; Weyts, Li et al. 2002; Kapur, Baylink et al. 2003; Gordeladze, Reseland et al. 2009), and the use of RDG alginate scaffolds makes the addition of growth factors less critical for chondrocyte phenotype acquisition (as shown by transcriptome analyses). Hyalouronan (HYAFF-11®) scaffolds have been shown to produce useful cells for osteochondral tissue replacement, provided that MSCs were applied instead of ASCs in the presence of TGFβ1 (Loken, Jakobsen et al. 2008; Jakobsen, Shahdadfar et al. 2010). Finally, it should be mentioned that scaffold material (e.g. polycaprolactone, PLGA/Hap, Collagen/Hap, agarose/gelatine hydrogel, polyacryl-amide hydrogel, PLGA nanofiber, agarose gel, polyacryl-amide gel, poly(2-hydroxyethylmethacrylate) micro-porous gel, and silk fibroin) made with a gradient in pore size (Sundelacruz and Kaplan 2009; Oh, Kim et al. 2010; Seidi, Ramalingam et al. 2011) is especially well suitable for interface (i.e. ligament-to-bone, tendon-to-bone and cartilage-to-bone) tissue engineering.

The concept of scaffolds/biomaterial presently extends to include biopolymers, self assembled systems, nanoparticles, carbon nanotubes and quantum dots (Williams 2009). This definition also includes micro-structured surfaces (Kolind, Dolatshahi-Pirouz et al. 2010), shown to inhibit cell proliferation and favour differentiation, as well as UV-bioimprinting of single cell surfaces (Muys, Alkaisi et al. 2006), favouring propagation of surface-cell-cell interactions, ensuring proper development of a defined cell phenotype in a 3D-structure. Application of the scaffolds principle to create a functional 3D-tissue structure can also be refined to what is called organ printing. Organ printing is a process which is scaffold free or involving hydrogels, and is defined as layer-by-layer additive robotic bio-fabrication of 3D-functional living macro-tissues and organ constructs using tissue spheroids as building blocks. These spheroids are subject to tissue fusion, constituting the final 3D-structure of living tissue (Mironov, Visconti et al. 2009). The principles consists of
three steps, including a) the production of homo-cellular aggregates, b) building hetero-cellular aggregates, and finally c) the assembly of organ-mimetics containing a 3D-vascular bed (Mironov, Visconti et al. 2009; Visconti, Kasyanov et al. 2010).

Organ print design of tissues may solve some of the problems encountered in osteochondral tissue engineering, namely vascularisation of bone tissue and gradient expression of genes from the luminal space to the bone interface of chondrocytes in hyaline cartilage, due to a lack of blood-born delivery of nutritional substances and oxygen (Salim, Nacamuli et al. 2004; Gibson, Milner et al. 2008). Transient changes in oxygen tension inhibit osteogenic differentiation, as demonstrated by reduced transcription of gene classes related to angiogenesis, family of matrix proteins, HIF-1α, as well as RUNX2, osteocalcin, and COL1A1 (Salim, Nacamuli et al. 2004). As for chondrocytes, it has been shown that high O2 tension makes them shift from producing normal articular isoforms of collagen (types II, IX, and XI) to collagen types I, III, and V (Gibson, Milner et al. 2008). High O2 levels also suppress the expression of SOX9, necessary for chondrocytic differentiation and Aggrecan synthesis (Murphy and Polak 2004). Interestingly, the microRNA species mir-210 has been shown to be enhanced by HIF-1α, thus improving tissue tolerance to low O2 levels (Huang, Le et al. 2010). This is consistent with the fact that mir-210 is down-regulated in dedifferentiated human articular chondrocytes assuming a more fibroblast/stem cell like phenotype (Karlsen, Shahdadfar et al. 2011).

Hence, there exists a plethora of scaffold materials to be considered, when optimal osteochondral tissue engineering conditions are to be defined.

7. Selection of stem cell niches and/or cell co-cultures

MSCs can be obtained from various tissues (Aicher, Buhring et al. 2010). Today the main source for isolation of MSCs in mammals is the bone marrow. However, bone marrow and other sources including placenta and adipose tissue contain MSCs displaying heterogeneous cell populations. Only a restricted number of appropriate stem cell markers have been explored so far, and it seems that the expression profile of CD-molecules differ on MSCs isolated from bone marrow, trabecular bone, dental pulp, articular cartilage, synovial membrane, adipose tissue, perivascular sites, term placenta, amnionic fluid, umbilical cord and pancreas (Bartholomew, Sturgeon et al. 2002; Dean and Bishop 2003; Le Blanc, Tammik et al. 2003; Niemeyer, Krause et al. 2006; Drosse, Volkmer et al. 2008; Gordeladze, Reseland et al. 2009; Aicher, Buhring et al. 2010). Knowledge of the phenotypical characteristics and the functional consequences of such subsets of MSCs might allow the development of improved regimens for regenerative medicine. MSCs, which express the specific cell adhesion molecule CD146, also known as MCAM, are well suited for bone repair. MSCs expressing CD56, CD146 and/or CD271 seem to be adaptable for the regeneration of bone, cartilage and intervertebral disks (Ohishi, Chiusaroli et al. 2009; Aicher, Buhring et al. 2010). Using two or more MSC niches may thus prove beneficial for the generation of bone tissue (Matsumoto, Kuroda et al. 2008; Grellier, Bordenave et al. 2009). CD34-positive, VEGF-secreting endothelial/skeletal progenitor cells have been shown to enhance the vascularisation and speed up fracture healing (Matsumoto, Kuroda et al. 2008). Such progenitor cells are normally recruited to the bone-forming site by the CXR4/SDF-1 pathway (Otsuru, Tamai et al. 2008). Grellier and co-workers have reviewed the literature as to the use of co-cultures of osteogenic and endothelial cells (Grellier, Bordenave et al. 2009). They describe combinations of osteogenic cells and endothelial cells like osteoblasts,
osteoprogenitor cells, umbilical vein endothelial cells, endothelial progenitor cells, saphenous vein endothelial cells, outgrowth endothelial cells, and dermal vascular endothelial cells cultured in 2D- or 3D-structures of various scaffold materials (Villars, Bordenave et al. 2000; Wenger, Stahl et al. 2004; Kaigler, Krebsbach et al. 2005; Stahl, Wu et al. 2005; Kaigler, Krebsbach et al. 2006; Clarkin, Emery et al. 2008; Guillotin, Bareille et al. 2008; Grellier, Ferreira-Tojais et al. 2009; Grellier, Granja et al. 2009) where the endothelial cells form a tubular structure surrounded by ECM-producing and mineralizing osteoblasts (Grellier, Bordenave et al. 2009).

In conclusion, co-cultures of niches of MSCs and/or vascularisation of appropriate scaffolds (e.g. scaffolds supporting “asymmetric” differentiation of tissue-generating cells) might secure a better functional and long-lasting engineered tissue.

8. Mechano-stimulation of progenitor cells during differentiation

Mechano-biology is a relatively new research field, where most of the insight related to osteochondral tissue engineering comes from embryonic skeletal development (Nowlan, Sharpe et al. 2010). However, the “mechanostat” principle was launched several decades ago by Frost and colleagues (Frost 2003; Skerry 2006; Mulvihill and Prendergast 2008). Genetic lesions or immobilization (surgical or drug-induced) lead to muscle less limbs, reduced muscle fibre size/number, or non-contractile muscles, and to underdeveloped joints and bones, mostly due to a lack of mechano-stimulation (Gomez, David et al. 2007; Kahn, Shwartz et al. 2009; Nowlan, Bourdon et al. 2010; Nowlan, Sharpe et al. 2010).

Several humoral factors, growth factors and receptors/ECM-protein/anchoring proteins share important signalling pathways, thus eventually leading to osteochondral differentiation of progenitor cells, for review, see (Gordeladze, Reseland et al. 2009; Kelly and Jacobs 2010; Potier, Noailly et al. 2010). Osteochondral progenitor cells may be subjected to shear stress (by fluid flow), compressive load (scaffold compression, hydrostatic pressure), or stretching (uni-, bi-, or equi-axial) leading to both proliferation and differentiation (Potier, Noailly et al. 2010). Several mechano-modulatory regimens (featuring detailed molecular mechanisms, type of mechano-stimulation, mechanical load applied, static or intermittent load, frequencies, as well as time frame during osteoprogenitor cell differentiation) using both 2D- and 3D-incubation systems, have extensively been described elsewhere (Angele, Schumann et al. 2004; Huang, Hagar et al. 2004; Woods, Wang et al. 2005; Campbell, Lee et al. 2006; Miyanishi, Trindade et al. 2006; Sumanasinghe, Bernacki et al. 2006; Mauck, Byers et al. 2007; McMahon, Campbell et al. 2008; McMahon, Reid et al. 2008; Thorpe, Buckley et al. 2008; Wagner, Lindsey et al. 2008; Arnsdorf, Tummala et al. 2009; Arnsdorf, Tummala et al. 2009; Gordeladze, Reseland et al. 2009; Haudenschild, Hsieh et al. 2009; Li, Kupcsik et al. 2010). However, the permutation of various factors enlisted above, yielding the optimal osteochondral cells for further studies in vivo, is difficult to envisage.

Cell shape, determined by the RhoA-Rho kinase = ROCK (influencing the actin cytoskeleton), has received much attention as a controller of cell development (McBeath, Piron et al. 2004; Arnsdorf, Tummala et al. 2009; Kelly and Jacobs 2010). This has renewed the interest in scaffold material made by nanotechnology, which is able to deliver 2D- and 3D-surfaces mimicking the ultimate surface pattern of osteoblasts and chondrocytes encountered in live tissues (Muys, Alkaisi et al. 2006; Kolind, Dolatshahi-Pirouz et al. 2010).
9. Stabilization of the osteoblast and chondrocyte cell phenotypes

In order to succeed replacing tissues like bone and cartilage, it is vital that the differentiated cells, whether pre-embedded in scaffolds or not, do not develop tumours or alter phenotype within a short period after implantation. The preferable phenotype should not lose acquired features or assume new ones. However, it has been speculated that engineered osteoblasts may be subject to premature senescence, acquire “drag-over” adipocyte characteristics, lose their ECM-synthesizing and mineralizing ability, while also enhancing osteoclast-mediated resorption yielding negative bone mass through multiple remodelling cycles. Furthermore, engineered hyaline cartilage chondrocytes may possibly shift their collagen-synthesizing and non-collagenous ECM producing profile towards hypertrophic and mineralizing chondrocytes. And chondrocytes may also recruit, activate and over-stimulate osteoclasts to resorb adjoining bone structures. Finally, it should be mentioned that engineered cartilage to replace hyaline articular cartilage also will be subject to remodelling, e.g. via the IL-1 induced Syndecan4-ERK-MMP3-ADAMT5 cleavage of Aggrecan, which is up-regulated in osteoarthritic joints (Bertrand, Cromme et al. 2010). It should also be mentioned that immune cells (e.g Th-17 cells) secrete interleukins known to differentiate and activate osteoclasts from monocytes (Weitzmann and Pacifici 2007; Adamopoulos and Bowman 2008; Tilg, Moschen et al. 2008; Hanada, Hanada et al. 2010; Pacifici 2010), and that chondrocytes exposed to exosome-like structures or certain microRNA antago- or pre-mirs (e.g. antagonmir-222), are detrimental to the chondrocyte phenotype (Gordeladze et al., unpublished observations).

Fig. 1A. Osteoblast differentiating scheme. Human mesenchymal stem cells (hMSCs) were incubated for 20 days in standard differentiating medium (containing dexamethasone), subjected to mechanical loading, transfected with the pcDNA3-Runx2 containing plasmid, grown in a 3D-lattice (PLA- or HA-based scaffolds), or transfected with antagomiRNAs corresponding to mir-328 and mir-339
It is therefore suggested that gene manipulations (at least temporal transcription control) should be considered as part of a strategy to create and stabilize in vivo engineered bone or cartilage for tissue replacement. Potentially, one should consider the transient manipulations of microRNAs, since these short RNA-molecules are known to interfere with a plethora of cell specific transcriptions factors (Gordeladze, Djouad et al. 2009). MicroRNAs are also targeting epigenetic factors (Roach and Aigner 2007; Dahl, Duggal et al. 2008; Haberland, Montgomery et al. 2009; Lee, Jung et al. 2011; McGee-Lawrence and Westendorf 2011) like HDACs involved in the differentiation of stem cells and stabilization of various cell phenotypes (Li, Xie et al. 2009; Li, Hassan et al. 2009; Lee, Jung et al. 2011).

10. Bone and cartilage engineering revisited

Permutation of factors influencing cell phenotypes

There are numerous reports in the literature featuring the results of manipulations of single or a few variables known to affect the result of cell engineering based on stem cell or progenitor cell differentiation towards osteoblasts or chondrocytes to be implanted to heal osteochondral tissue lesions. These factors relate to cell source(s), application of growth factors, the use of gene therapy, application of mechano-stimulation and the selection of scaffold material (Isogai, Kusuhara et al. 2006; Gordeladze, Reseland et al. 2009; Aicher, Buhring et al. 2010; Granchi, Ochoa et al. 2010).

To find the combination of factors rendering engineered cells functional enough to assume a “proper” phenotype, generating tissues not deviating from their original counterparts with given characteristics, represents a painstaking task. It seems insurmountable, since the number of permutations necessary to explore all possible additive or synergistic interactions are numerous. It is therefore probably a good approach to define a set of measurable end-point characteristics for osteochondral tissues to evaluate the experimental steps taken, when going from bench to patient. Osteochondral tissues represent certain geometrical and mechanical properties (Knecht, Vanwanseele et al. 2006; Gordeladze, Reseland et al. 2009), as well as gene expression profiles (Grundberg, Brandstrom et al. 2008; Duggal, Fronsdal et al. 2009; Granchi, Ochoa et al. 2010; Herlof森, Kuchler et al. 2011), which may guide the selection of major combinations of treatments, as envisaged by the permutation process. To shed light on this exercise, some bioinformatics exercises have been conducted, and some selected experiments have been described.

Permutations encompassing mechano-stimulation, 3D-growth, and manipulations of genes and microRNAs

MSCs were differentiated in standard media towards osteoblasts or chondrocytes, by subjecting them to cyclical mechano-stimulation (uni-axial stretch), gene manipulations, growth in 3D-lattices, and finally to manipulations of microRNA levels. The following test battery was used: Q-PCR analyses of osteoblast and chondrocyte “specific” transcription factors (TFs) and marker genes (e.g. RUNX2, OSTERIX = SP7, VDR, RANK-L, OPG, SOX9, GLI3, FOXO3A, WNT5A, ALPL, COL1A1, OSTEOCALCIN, OSTEOPONTIN, COL2A1, COL10A1, AGGRECAN); Q-PCR of mir-326, mir-339, mir-24, and mir-149; immunohistochemistry of COL2a1 and AGGRECAN; cell staining using Alizarin Red S and Alcian Blue; mineralization (radiology and histology) in SCID mice (m. tibialis); GAG/DNA-ratio, clinical score for micropellets and alginate beads; osteoclast resorption assay (using PBMCs + RANK-L/CSF-U on dentine slices). Some of the results obtained
with MSCs differentiated towards osteoblasts are referred to in Figures 1 and 2, panels A and B.

Fig. 1B. Selected results of the experiment described in Figure 1A. Mechanical loading was performed in monolayers using uni-axial cell diameter alteration by 1000 µE (1E = 1 micro-strain = 1/1,000,000 alteration of the cell’s diameter) for 30 min every other day. The antago-miRNAs were transfected (by lipofection) into cells in monolayers every 5 days. Expression of genes like Runx2, Collagen-1, Osteocalcin and the microRNAs 328 and 339, were performed using Q-PCR. Furhtermore, Alizarin Red staining (indicating mineralized surface) was performed at day 20, and cells being deposited (for an additional 7 days) in the tibial muscle of SCID mice were X-rayed, harvested and subjectd histological analyses

Figure 1A indicates the manipulation of MSCs grown in: 1) osteoblast differentiating medium 2) in mono-layers, 3) exposed to mechano-stimulation, 4) subject to up/down-regulation of TFs, and 5) grown in PLA- or HA-scaffolds (cylinders), or 5) transfected with pre- or antago-microRNAs. Figure 1B features some of the results of these single manipulations, indicating that RUNX2 over-expression is superior in terms of osteoblast
differentiation, however, mechano-stimulation, and suppression of mir-328 and mir-339 also give promising osteoblasts for in vivo implantation.

Figure 2A describes the manipulation of MSCs grown in chondrocyte differentiating medium 1) in mono-layers, 2) exposed to mechano-stimulation, 3) subject to up/down-regulation of TFs, 4) grown in alginate beads or micropellets, or 5) transfected with pre- or antago-microRNAs. Figure 2B summarizes selected results of these single manipulations, indicating that suppression of RUNX2 is no better than incubation in micropellets or alginate beads, or transfecting the cells with premir-24 and premir-149. All in all, manipulating the microRNA species seem to give superior results.

Fig. 2A. Chondrocyte differentiation scheme. Human mesenchymal stem cells (hMSCs) were incubated for 20 days in standard differentiating medium (containing TGFβ3), subjected to mechanical loading (1000 µE), infected with anti-Runx2-shRNA (contained within a lentiviral construct), grown in a 3D-lattice (micropellet or alginate), or transfected with premiRNAs corresponding to mir-24 and mir-149.

From the above experiments, a 20 day differentiating scheme was envisaged, where gene- and microRNA-manipulated MSCs, grown in standard differentiating media, were mechano-stimulated for 10 days and thereafter incubated for another 10 days in a 3D-structure (HA-scaffold for osteoblast, and alginate beads for chondrocytes). These incubation schemes are shown in Figure 3A, while results of the experiments are summarized in Figure 3B. By combining the different manipulations, it was shown that osteoblast and chondrocyte “specific” markers were enhanced some 3-4 fold over control MSCs differentiated in mono-layers compared to 2-3 fold for single condition manipulations. To assess the influence of inflammation (using incubation media containing interleukins and TNFα) on osteoblast or chondrocyte phenotype stability and osteoclast activation, cells were exposed to IL-1β, IL-6, IL-17 and TNFα for 14 days. Osteoclasts...
differentiated from PBMCs for 7 days were then co-culture with the osteoblasts or chondrocytes, and resorption pit surface was assessed. It became quite clear that inflammatory cytokines were detrimental to the osteochondral cell phenotypes and microRNA profile, and they also enhanced their ability to stimulate bone resorption through activation of osteoclasts. From these experiments, it seems that one might chose transient microRNA manipulations in combination with either cell stretching or growth in scaffold/hydrogel, if a permanent gene manipulation (e.g. alteration of RUNX2- and possibly also SOX9-expression) may render the cells less prone to negative influence encountered within their new environment.

Bioinformatics networking using micro-arrays of translated RNAs and non-translated microRNAs

To elucidate the concept of permutations of variables pertaining to the differentiation of stem cells (SCs) to become preferred osteoblasts or chondrocytes for tissue replacement, we will present an interesting exercise with transcriptomes, microRNA micro-arrays and a literature survey. Based on osteoblast derived transcriptomes (Grundberg, Brandstrom et al. 2008; Granchi, Ochoa et al. 2010), featuring gene transcripts from cells in human trabecular hip bone explants, and differentiating human mesenchymal stem cells (MSCs) undergoing differentiation and mineralization phases, respectively, a combined transcriptome of 188 genes were constructed. This transcriptome was run against two microRNA micro-arrays obtained from a) human MSCs differentiated to osteoblasts within a hydroxyapatite (HA) scaffold for 28 days, and from b) human MSCs differentiated to osteoblasts in monolayers for 3 days only, using a bioinformatics program designated Mir@nt@n (Le Bechec, Portales-Casamar et al. 2011). Furthermore, a transcriptome of genes pertinent to the chondrocyte phenotype, consisting of 261 genes, was compiled by Brinchmann et al. (Duggal, Fronsdal et al. 2009; Herlofsen, Kuchler et al. 2011). These MSCs, grown in PRONOVA-LVG alginate for 21 days, represented genes displaying the same time course over 21 days as did COL2A1 or CXCL12. The present transcriptome was run against two microRNA micro-arrays obtained from a) human chondrocytes embedded in hyaline cartilage and dedifferentiated for 28 days, and b) human MSCs differentiated to chondrocytes in micropellets for 3 days.

The bioinformatics procedure featuring some comprehensive examples is given in Figure 4A. Twelve genes involved in WNT- and NOTCH-mediated signalling (according to KEGG’s pathways) and a set of fourteen transcription factors (TFs) known to be important for osteoblastogenesis (Komori 2006; Marie 2008; Gordeladze, Djouad et al. 2009) were loaded into Mir@nt@n and two small networks emerged. All the microRNAs 16, 22, 24, 93, 125b, 141, 149, 200a and 206 have been shown to be down-regulated in osteoblastic cells (Gordeladze, Djouad et al. 2009; Lin 2009), which would be consistent with an up-regulation of TFs (SATB2, ETS1, and RNF11), and WNT (signalling molecule binding to FRIZZLED-LRP5/6) (Gordeladze, Reseland et al. 2009). However, NOTCH3 (known to inhibit osteoblastogenesis through interactions with the canonical WNT-pathway and Runx2) (Gordeladze, Reseland et al. 2009) would also be up-regulated. Interestingly, ETS1 seems to be involved in a regulatory network involving NOTCH3, RNF11, and six microRNA species, where mir-206 is reciprocally interacting with ETS1. Mir-206 is marginally down-regulated in osteoblasts, however, significant over-expression of this microRNA species in mice leads to bone loss (Inose, Ochi et al. 2009). Finally DKK2 (an inhibitor of LPR5/6) would be up-regulated, and the present prediction cannot be given a straight-forward, simple interpretation.
Out of seventeen putative interactions (reciprocal or not) between microRNAs known to be down-regulated in osteoblasts, eight are compatible with a direct inhibitory effect on translation, yielding 47% consistency according to the concept of microRNA-TF interactions (Zhou, Ferguson et al. 2007; Aguda, Kim et al. 2008; Hobert 2008; Do and Scholer 2009). The conclusion to be drawn from this example is that the list of marker genes and microRNAs describing the differentiation of MSCs to osteoblasts is too slim to warrant its use as a predictor of the acquisition of a proper osteoblast phenotype to be employed in bone replacement therapy. But, after all, the marker genes and microRNAs were all just picked from various, independent articles on osteoblast differentiation and from two KEGG’s pathways charts.
Regenerative Medicine and Tissue Engineering - Cells and Biomaterials

Fig. 3A. Multipurpose differentiation scheme. The following experimental settings were selected: Human MSCs were incubated in standard differentiating medium containing dexamethasone or TGFβ3 alone, respectively, or manipulated for 10 days interfering with gene expression, microRNA levels, and cell shape, and thereafter incubated in a 3D-structure (HA-scaffold or alginate hydrogel, respectively) for another 10 days.

More interestingly, Figure 4B describes the results of the use of the Mir@nt@n networking algorithm, where the applied lists of target genes are based on cells derived from healthy human bone and cartilage, and the microRNA species are retrieved from micro-arrays obtained from the tabulated experiments. The four experimental conditions summarized here (involving on average some 30 microRNA species and 225 genes per experiment) clearly indicate that cell manipulations performed in a 3D-structure, and over a prolonged time frame of 28 days, yield a preferred osteoblast or chondrocyte phenotype, since the percent compatibility demonstrated by microRNA – target gene interactions were 76% versus 19% (osteoblasts) and 88% versus 16% (chondrocytes), respectively.

Some examples of expected regulation patterns are given underneath: MSCs differentiated into osteoblasts in a HA scaffold show an up-regulated level of mir-143. In parallel, transcripts of putative target genes like DUSP2 (inactivates the MAPK pathway used by TNFs and TGFβs), BMP1 (involved in chondrogenesis), ID1 (belongs to the TGFβ pathway involved in chondrogenesis), TNFAIP6 (TNFα-induced protein 6), and FBN1 (sequestering TGFβ within ECM) were up-regulated. The first five interactions are expected, the last one is not (giving a per cent compatibility of 83%). Furthermore, the mir-29 family (MIR-29a,b,c) of microRNAs was down-regulated, and putative target transcripts of genes like COL1A1, COL4A1, COL4A5, COL5A1, COL21A1, BMP1, ID1, TNFAIP6, and FBN1 should be up-regulated. According to their alleged function, the interaction of the 29-family of microRNAs is expected when the collagens are concerned (Eyre 2002; Almarza and Athanasiou 2004; Goldring, Tsuchimochi et al. 2006; Davies, Chang et al. 2007; Shahdadfar,
Loken et al. 2008; Heinegard 2009; Van Agtmael and Bruckner-Tuderman 2010), but does not comply with the expected down-regulation of BMP1, ID1, and TNFAIP6. Cumulative compatibility score is now down to 73%. According to the literature (Li, Hassan et al. 2009), mir-29b does de facto bind to the 3’-UTR of the COL1A1, COL5A3 and COL4A2. Furthermore, the mir-29 family of microRNAs has also been shown to be involved in the regulation of Wnt-signalling through a positive feed-back loop (Kapinas, Kessler et al. 2010) and via suppression of SPARC (osteonectin) (Kapinas, Kessler et al. 2009). Scrutinizing the effect of mir-376c (being down-regulated) reveals that putative targets are DLX1 and RUNX2 (important TFs ensuring osteoblastogenesis), SPP1 (involved in bio-mineral tissue development and ossification) and PAFAH1B1 (involved in cell cycle adaptation to differentiation). Now, the cumulative compatibility score is 80%. The final cumulative score for this experiment (MSCs to osteoblasts in HA scaffold for 28 days) converged towards 76%. As expected, the 3 days incubation of MSCs seeded in culture flasks in osteogenic medium yielded a compatibility score of only 18%, where some of the microRNAs being modulated in the 28 days experiments with MSCs seeded into HA scaffolds did not appear as significantly altered (e.g. mir-376c).

<table>
<thead>
<tr>
<th>Characteristics obtained with combined differentiation strategies (based on rank scores)</th>
<th>Osteo Control</th>
<th>Osteo Combined</th>
<th>Chondro Control</th>
<th>Chondro Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect on osteoblast differentiation (Q-PCR of TFs and marker genes)</td>
<td>100</td>
<td>326</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effect on chondrocyte differentiation (Q-PCR of TFs and marker genes)</td>
<td></td>
<td></td>
<td>100</td>
<td>365</td>
</tr>
<tr>
<td>Effect on osteoblast differentiation (Mineralization/ALP-positive surface, in vivo mineralization and histology)</td>
<td>100</td>
<td></td>
<td>287</td>
<td></td>
</tr>
<tr>
<td>Effect on chondrocyte differentiation (Alcian blue surface, GAG/DNA-ratio, immunohistochemistry, histological score)</td>
<td></td>
<td></td>
<td>100</td>
<td>345</td>
</tr>
<tr>
<td>Effect on engineered osteoblasts to “reverse” detrimental biological effect of inflammatory cytokines</td>
<td>100</td>
<td>388</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effect on engineered chondrocytes to “reverse” detrimental biological effect of inflammatory cytokines</td>
<td></td>
<td>100</td>
<td></td>
<td>276</td>
</tr>
<tr>
<td>Effect on engineered osteoblasts to resist “increase” in pertinent microRNAs (i.e. MiR-328, -339)</td>
<td>100</td>
<td>445</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effect on engineered chondrocytes to resist “loss” of pertinent microRNAs (i.e. MiR-24, -149)</td>
<td></td>
<td></td>
<td>100</td>
<td>412</td>
</tr>
</tbody>
</table>

Fig. 3B. Selected results obtained in the experiment described in Figure 3A showing synergism of the single manipulations used in combination. The following parameters were analysed: effect on cell differentiation, as estimated by Q-PCR of transcription factors (TFs) and marker genes, or as mineralized/ALP positive surfaces, in vivo mineralization in SCID mice and de novo bone tissue production (histology), and proteoglycan positive surface (Alcian blue colouration). Furthermore, the impact on cell phenotype stability upon exposure to cytokines (IL-1β, IL-6, IL-17, and TNFα) in terms of osteoclast activation and microRNA stability, was determined.

Chondrocytes embedded within hyaline cartilage were dedifferentiated within their native matrix for 28 days, and a micro-RNA micro-array was obtained. Running these micro-RNA species using the Mir@nt@n algorithm together with the transcriptome of 261 genes gave a compatibility score of 88% (see Figure 4B). The following microRNAs and putative target
gene transcripts should be mentioned: Mir-143 was up-regulated upon dedifferentiation, and putatively interacts with gene transcripts like SMO (involved in hedgehog = Hh activation of Gli1/2/3-mediated chondrogenesis) (Bale 2002; Takebe, Harris et al. 2011), COL1A1 (serves as bone matrix protein), WNT10B (involved in osteoblast differentiation), ADAMTS11 (exhibits metalloproteinase activity), and HAS3 (synthesizes hyaluron). The mir-143 mediated suppression of all the above listed genes are expected when chondrocytes are dedifferentiated. Mir-140-3p was down-regulated and coupled to the modulation of gene transcripts like KLF4 (transcription factor activated by the Wnt-pathway) (Saulnier, Puglisi et al. 2011), FOXQ1 (serves as a down-stream mediator of TGFβ1 signalling) (Feuerborn, Srivastava et al. 2011), CITED4 (serves as a co-activator of CEP/p300, TFAP2, and SMAD4 transcription factors involved in stem cell differentiation) (Braganca, Swingler et al. 2002), and PTCH4 (receptor activated by Hh, thus stimulating the SMO-GLI pathway of gene transcription) (Takebe, Harris et al. 2011).

Fig. 4A. Bioinformatics-based marker gene and microRNA networking. A list consisting of marker genes taken from the canonical WNT- and the NOTCH-pathways (see KEGG’s pathways), as well as transcription factors (TFs) and microRNAs demonstrated to be involved in differentiation of osteoblasts (Gordeladze, Djouad et al. 2009; Hassan, Gordon et al. 2010; Kapinas, Kessler et al. 2010) was loaded into the Mir@nt@n algorithm, searching for interaction networks. Within the complicated network obtained, two types of interactions emerged: 1) microRNAs target several gene transcripts (putatively binding to the 3’-UTR region of the subject mRNAs) (left-hand chart), and 2) microRNAs may be involved in regulatory loops with TFs (right-hand chart).

A fall in mir-140-3p is compatible with an up-regulation of the four above mentioned gene transcripts and loss of chondrocyte phenotype. So far, the compatibility score is 100%. Another microRNA up-regulated in dedifferentiated chondrocytes is mir-382, which putatively targets the transcripts of the following genes: PLCG2 (PLCγ2 activates NF-κB, AP-1, and NFATc1 induced gene expression important for osteoblastogenesis) (Chen, Wang
et al. 2008; Marie 2008; Gordeladze, Reseland et al. 2009), DKK2 (serves as an inhibitor of the Wnt-signalling pathway), and RUNX3 (cooperates with RUNX2 to induce chondrogenesis through Hh synthesis) (Komori 2005). Mir-15b proved to be up-regulated upon dedifferentiation of the mature, hyaline cartilage-embedded chondrocytes, and putatively targets the following gene transcripts: FGF2 (involved in chondrogenesis) (Goldring, Tsuchimochi et al. 2006), CCND1, LRP6, FZD4 (Katoh 2007). All genes targeted by mir-382 and mir-15b are associated with the osteochondral phenotype and therefore, the compatibility score remains at 100%. Lastly, mir-21 and mir-495 were up-regulated upon dedifferentiation of the hyaline cartilage chondrocytes. Putative targets were SOX5 (transcription factor favouring chondrogenesis), MEF2C (necessary factor for collagen X transcription, and interacting with Dlx5/6 to enhance RUNX2 expression) (Solomon, Berube et al. 2008), and SOX6 (transcription factor favouring chondrogenesis, FGF7 (involved in chondrogenesis), CDH13 (predisposing factor along with TGFβ3, PTHR1, and PRG1 in ossification of ligaments of the spine) (Furushima, Shimo-Onoda et al. 2002), GLI3 (early transcription factor appearing during chondrogenesis) (Bale 2002; Takebe, Harris et al. 2011), respectively. This completes the random selection of microRNAs, however, at this point the compatibility score was still a staggering 100%. Subsequent to the analysis of all putative interactions, the score fell to 88%. The same exercise performed on microRNA-arrays from MSCs differentiated in micropellets for 3 days revealed a compatibility score of some 16% only, despite a similar number of microRNAs and gene transcripts significantly modulated compared to controls.

<table>
<thead>
<tr>
<th>Experiment conducted</th>
<th>MicroRNA species</th>
<th>Gene transcripts targeted</th>
<th>Per cent (%) compatibility with expected modulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osteoblast: 188 genes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSCs: differentiation in HA scaffold (3D) for 28 days</td>
<td>34</td>
<td>89 (14%)</td>
<td>76</td>
</tr>
<tr>
<td>MSCs: differentiation in monolayers (2D) for 3 days</td>
<td>17</td>
<td>53 (28%)</td>
<td>18</td>
</tr>
<tr>
<td>Chondrocytes: 261 genes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chondrocytes: Embedded in hyaline cartilage, dedifferentiated in 3D for 28 days</td>
<td>52</td>
<td>136 (52%)</td>
<td>88</td>
</tr>
<tr>
<td>MSCs: differentiation in micropellets (3D) for 3 days</td>
<td>54</td>
<td>142 (54%)</td>
<td>16</td>
</tr>
</tbody>
</table>

Fig. 4B. Computation of compatibility score between osteoblast and chondrocyte transcriptomes and microRNA profiles. Gene transcript (mRNA) and microRNA networks were generated using osteoblast mRNA fingerprints from separate experiments (published in the literature) and microRNA-arrays from own experiments (see chapter text). Percentage of predicted mRNA-microRNA interactions in accordance with expected up- and down-regulation of gene expression in osteoblasts and chondrocytes were calculated. The higher the percentage, the better the differentiation process obtained, and (theoretically) the higher probability of success when using engineered osteochondral cells for tissue replacement.

In conclusion, the more in vivo like incubation conditions, the more tissue-adapted osteoblasts and chondrocytes will be obtained when performing in vitro cell engineering. This exercise does not take into considerations all possible favourable factors (like stem cell...
source, differentiation media, optimal scaffolds, mechano-stimulation, gene-manipulations including phenotype protection by microRNAs etc.), but it is reasonable to believe that a permutation of selected conditions will aid in arriving at osteoblasts and chondrocytes highly suitable for long-lasting tissue replacements. Finally, it should be emphasized that one must improve on the selection of genes (and microRNAs) to constitute the preferred profile of proper osteoblasts and chondrocytes for successful tissue replacements.

Of special interest are the observations that the use of microRNA manipulations seems to protect the engineered osteoblasts and chondrocytes from losing their phenotypic characteristics in an environment where inflammation still is active, as well as protecting them from over-activating osteoclasts within the space (i.e. knee joint) where they might be replacing damaged tissue.

11. Summary and future perspectives

This chapter summarizes the concept of single factor permutations in order to arrive at the optimal scheme for generating osteochondral cells for tissue replacement. To be considered is the use of trimmed osteoblast or chondrocyte transcriptomes (between 200 and 400 transcripts) obtained from clean cell populations residing within healthy bone and cartilage, along with a defined number of microRNA species (not more than 20-30) as markers and guidance for the use of a set of manipulations eventually leading to functional and stable cell phenotypes.

One scheme may consist of the following materials and factors: MSCs or ASCs exposed to a growth factor in a serum-free differentiating medium, mechano-stimulation (adapted to optimize differentiation of osteoblasts or chondrocytes), preferably within scaffolds (designed to display a porosity gradient), transient adjustments of the levels of certain microRNA species (down-regulated in differentiating osteoblasts, up-regulated in differentiating chondrocytes).

If the disease necessitating tissue replacement can be handled/treated successfully, manipulations of the engineered cells to withstand phenotype alterations, may not be necessary. However, in the case of osteochondral replacement in joints being subject to inflammation, it may be necessary to protect the engineered cells from changing their function (e.g. stimulating osteoclastogenesis) or showing an accelerated development of senescence, by permanently modulating expression of selected genes or microRNAs.

12. Acknowledgements

This project was supported by EU FP6 integrated project “Genostem cells engineering for connective tissue disorders”, Norwegian Center for Stem Cell research, The National Hospital, Oslo, Norway, and The Research Council of Norway.

13. References

Le Bechec, A., E. Portales-Casamar, et al. (2011). MIR@NT@N: a framework integrating transcription factors, microRNAs and their targets to identify sub-network motifs in a meta-regulation network model. BMC bioinformatics 12: 67.

Bone and Cartilage from Stem Cells:
Growth Optimalization and Stabilization of Cell Phenotypes

Solmesky, L., S. Lefler, et al. (2010). Serum free cultured bone marrow mesenchymal stem cells as a platform to characterize the effects of specific molecules. *PloS one* 5(9).

Bone and Cartilage from Stem Cells: Growth Optimalization and Stabilization of Cell Phenotypes

Mesenchymal Stem Cell-Based Bone Engineering for Bone Regeneration

Mohamadreza Baghaban Eslaminejad and Faezeh Faghihi
Department of Stem Cell and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran Iran

1. Introduction

Many people worldwide suffer from bone defects due to trauma or disease. About 5-10% of football injury-related bone fractures, in addition to bone tumor resection and massive traumatic bone loss result in critical-sized bone defects that cannot regenerate autonomously (Cattermole et al., 1996; Low et al., 2004; Reuss et al., 2007 as cited in Porter et al., 2009). Usually small bone defects heal spontaneously but large defects cannot regenerate without intervention. There are several options for the reconstruction of large bone defects that include bone grafts (autograft, allograft and xenograft) as well as bone constructs created by bone tissue engineering principles.

Among these different strategies, bone grafts from healthy donors have been used as therapies for decades, but nowadays they are used less due to inherent limitations associated with their application. For example, autografts are usually obtained from the iliac crest (Porter et al., 2009) and have been used in clinics for a long time. However some disadvantages, including supply limitation, risk of donor site morbidity, pain, paresthesia, hematoma and inflammation, as well as the need for prolonged rehabilitation (For review see Heary et al., 2002; Krelow et al., 2007; Maddela et al., 2010; Nakajima et al., 2007) limit their applications. Allografts, on the other hand, are the other option that may be chosen for bone defect regeneration. This type of bone graft can be derived from viable or sterilized non-viable (cadaver) human sources. Orthopedic allografts exhibit certain drawbacks by transmitting donor pathogens to the recipient body and triggering host immune responses (For review see Hou et al., 2005 and Nishida et al., 2008). Xenografts obtained from non-human sources may be considered as the other alternative for reconstructing bone defects, but this is a last resort which may be taken because it is not an approved option in transplantation, owing to the obvious risk of viral and disease transmission, infection, toxicity and immunogenicity as well as rejection by the recipient’s body (For review see Laurencin et al., 2008; Yang et al., 2007).

Concerns associated with applications of bone graft for critical size bone defects have challenged scientists to search for suitable options. Attempts to replace appropriate substitutes for bone graft have resulted in opening a new window in modern regenerative biomedicine and the emergence of bone constructs elaborated by tissue engineering principles. The term tissue engineering is defined as the application of the principles and
methods of engineering and life science toward fundamental understanding of structure-function relationship in normal and pathological mammalian tissues and the development of biological substitutes for the repair or regeneration of tissue or organ function (Persidis 1999; Chapekar et al., 2000). To develop biologic substitute tissue engineering uses three building blocks including scaffold, cells and growth factors. Each of these elements alone can promote tissue regeneration but constructs fabricated with the use of component combination would be more effective. The objective of the present chapter is therefore to describe bone construct fabricated with tissue engineering principles for bone regeneration. Among cellular candidates, mesenchymal stem cells (MSCs) possess some characteristics that make them more appropriate for bone tissue engineering. Hence, the focus of the current chapter is MSC-based bone constructs.

2. Mesenchymal stem cells as cellular candidates for bone engineering

Bone constructs typically consist of three elements: scaffolds, growth factors and cells. Several cell types can potentially be used as cellular material for elaborating a bone construct. In this section, commonly used cells with potential applications in the field of bone engineering will be summarized, followed by special focus on MSCs.

2.1 Osteoblastic cells

Osteoblastic cells may seem to be more appropriate for bone engineering because they are resident cells in natural bone and can be utilized at autogenic settings. In bone engineering strategies, osteoblastic cells are usually obtained from biopsies taken autologously from patient’s bone. Despite of this obvious advantage, there are some concerns with the use of osteoblasts in the process of bone engineering. Osteoblasts are present in limited numbers in bone biopsies since bone is indeed a tissue rich in ECM rather than cells. Furthermore, tissue engineering strategies need considerable cell numbers, however osteoblast proliferation is slow (Bruder et al., 1999; Heath et al., 2000). For these reasons stem cells having enormous proliferative capacity are preferable.

2.2 Embryonic stem cells

Embryonic stem cells (ESCs) are pluripotent cells derived from a blastocyst inner cell mass. Murine ESCs were described in 1981 (Evans et al., 1981) and human ESCs introduced in 1998 (Thomson et al., 1998). Their indefinite self-renewal potential, differentiation capacity to all three germ layers, and osteoblastic cells in particular (Arpornmaekilong et al., 2009; Hwang et al., 2009a; Warotayanont et al., 2009 as cited in Seong et al., 2010) have persuaded scientists that ESCs could be appropriate for clinical applications. ESCs have the characteristics of self-renewal as long as they are exposed to a feeder cell layer or leukemia inhibitory factor (LIF). Differentiation initiates upon removal of the feeder cell layer or LIF, resulting in the formation of three dimensional cell aggregates known as embryoid bodies (EBs). These EBs can regionally differentiate into derivatives of three germ layers: mesoderm, ectoderm and endoderm (Itskovitz-Eldor et al., 2000 as cited in Seong et al., 2010). Generally, for osteogenic induction of ESCs, EBs or single cells from EBs are replated and induced by beta-glycerophosphate, ascorbic acid and vitamin D3 (Buttery et al., 2001; Kawaguchi et al., 2005; Woll et al., 2006). Thus ESCs can be a potential stem cell source to fabricate bone-like tissue constructs in the field of tissue engineering; however,
immunologic incompatibility and the possibility of teratoma formation in transplantations as well as certain ethical concerns make scientists hesitant to use them as cellular materials with which to fabricate bone construct for bone regeneration (Undale, 2009).

2.3 Induced pluripotent stem cells
Because of the above-mentioned concerns regarding ESCs, scientists have tried to establish ESC-like stem cells, known as induced pluripotent stem cells (iPSCs) from somatic cells by plasmid or adenovirus-based transduction (Takahashi and Yamanaka, 2006, Park et al., 2008, Kang et al., 2009 as cited in Feng et al., 2010). Actually, iPSCs are patient-specific ESCs without ethical concerns that do not trigger an immune response (Feng et al., 2010). The differentiation potential of these cells into various cell lineages, such as neural cells, cardiomyocytes and hematopoetic cells as well as osteoblasts have been confirmed (Hanna et al., 2007; Wernig et al., 2007). Despite this prominent capability, there is an important issue which needs to be considered before their clinical applications. The method by which iPSCs are generated, i.e. through plasmid or adenovirus-based transduction is a main concern.

2.4 Mesenchymal stem cells
Among stem cells, mesenchymal stem cells (MSCs) seem to be more suitable for bone engineering compared to ESCs, iPSCs or osteoblastic cells due to several characteristics that they possess. First, the osteogenic differentiation potential of MSCs is the first differentiation capacity reported at the time MSCs were discovered. Today, it is one of the most obvious characteristics of MSCs which is maintained for an extended time. Secondly, autologous MSCs are easily accessible from patient's multiple tissues, including bone marrow aspirates. Additionally, because of MSCs ability to modulate immune responses, the use of allogeneic MSCs may be feasible without a substantial risk of immune rejection (Undale et al., 2009).

2.4.1 Characteristics of MSCs
MSCs are defined as non-hematopoietic cells derived from bone marrow as well as other mesenchmal tissues. These cells possess two important capacities: the potential to self-renew for a relatively long time and the ability to differentiate along multiple cell lineages including bone, cartilage and adipose cells. MSCs express many surface antigens including STRO-1, CD105, SH3, CD29, CD44, CD71, CD90, CD106 and CD124 (for review see Pittenger et al., 1999; Colter et al., 2001). Besides bone marrow, multiple tissues have been reported to contain MSCs including adipose tissue (Dragoo et al., 2003), trabecular bone (Noth et al., 2002), periosteum (Fukumoto et al., 2003), synovial membrane (Wickham et al., 2003), skeletal muscle (Jankowsk et al., 2002), as well as teeth (Miura et al., 2003).

Cohnheim, a German pathologist, initially suggested the presence of MSCs when he attempted to study wound healing in rabbits. By intravenous injection of non-soluble aniline stain, Cohnheim could detect some stained cells at the site of the wound which had been experimentally created in the animal’s distal limb. He concluded that the stained fibroblastic cells were derived from bone marrow and transferred to the wound site via the circulatory system (Prockop, 1997; Ross, et al., 1970). Since then, experimental studies on bone marrow transplantation have confirmed the osteogenic and chondrogenic differentiation capacities of bone marrow cells, but no one could clearly indicate the exact responsible cell types (Friedenstein et al., 1966; Petrakova et al., 1963). Finally, Friedenstein et al. have determined that the osteo/chondrogenic differentiation potential of bone marrow is due to the existence
of a fibroblastic population referred to as colony forming unit-fibroblasts (Friedenstein et al., 1973). Thus far, these fibroblast-like cells have been referred to as marrow stromal cells; marrow progenitor cells (MPCs) and marrow stromal fibroblasts (MSFs), as well as mesenchymal stem cells (MSCs). MSC is the more frequently used nomination particularly in recently published investigations.

MSCs occur in low quantity in bone marrow aspirate and constitute approximately 0.001%-0.01% of the entire bone marrow cells. In spite of their limited numbers, MSCs can easily be expanded through standard culture techniques. The expansion of these cells is strongly dependent on the bovine serum content of the culture media. The cells assume spindly-shaped morphology upon cultivation. MSCs primary culture has been reported to be heterogeneous and contains multiple colonies with various differentiation capacities. Pittenger et al., in 1999, have shown that nearly one third of these colonies have osteogenic, adipogenic and chondrogenic differentiation potentials and the other two thirds exhibit either bipotent or unipotent capacity to differentiate into osteogenic/chondrogenic and adipogenic lineages, respectively (Pittenger et al., 1999). In addition to differentiating into bone, cartilage and adipose cells, MSCs have been reported to possess differentiation capacity along non-mesenchymal cell lineages such as neurons, keratinocytes, liver, intestine and kidney epithelial cells (for review see Sugaya 2003; Chapel et al. 2003). This property is referred to as MSCs plasticity or transdifferentiation.

2.4.2 Osteogenic differentiation potential of MSCs

Osteogenic differentiation of MSCs is a complex process in which various environmental factors are involved. Dexamethasone, ascorbic acid and beta glyceral phosphates are the most commonly used chemicals that promote in vitro osteogenic differentiation of MSCs. Among these compounds, dexamethasone plays a pivotal role such that in its absence, no differentiation occurs in human MSC culture (Porter et al., 2003). Ascorbic acid, on the other hand, has been found to be an important but not necessary component of osteogenic medium. The addition of ascorbic acid into osteogenic medium results in enrichment of the deposited matrix with collagen (Choi et al., 2008). Beta glyceral phosphate, as a phosphate enriched organic compound, plays some role in matrix mineralization (Coelho et al., 2000). Besides these three routinely used compounds, hormones and growth factors have osteogenic effects on MSCs differentiation. These include 1, 25-di-hydroxyvitaminD3 (vitD3) (Rickard et al., 1995), estrogen (Holzer et al., 2002), leptin and parathyroid hormone (Holzer et al., 2002), prostaglandin E2 (Scutt et al., 1995), sonic hedgehog (Spinella-Jaegles et al., 2001), IGF-1 (Koch et al., 2005), BMP-2, 4, 6, 7 (Gori et al., 1999; Diefenderfer et al., 2003; Gruber et al., 2004), FGF (Jaiswal et al., 2000), as well as bio- and lithium chloride (de Boer et al., 2004; Eslaminejad et al., 2008).

Each osteogenic factor inserts its effect through a distinct signaling pathway. Some of these pathways, such as the dexamethasone pathway, are unknown whereas others are recognized to some extent. For example, BMPs mediate their osteogenic effects through the BMP signaling pathway, via activation of smad transcription factors (Massague et al., 2000) and parathyroid hormone induces the expression of osteogenic genes via the G-protein coupled receptor signaling pathway (Carpio et al., 2001).

Induction of the above-mentioned signaling pathways ends consequently in expression of some specific signaling proteins and specific osteoblastic transcription factors. Core binding factor alpha 1 (Cbfa1), also referred to as Runx2, is the most important transcription factor
involved in osteogenesis (Yamaguchi et al., 2000). This transcription factor induces the expression of different bone-related genes including osteocalcin, osteopontin, bone sialoprotein and the parathyroid hormone receptor (Ducy et al., 2000). Furthermore, osterix is the other transcription factor reported to be expressed upon commitment of cells toward osteogenic differentiation (Tu et al., 2006).

2.4.3 Self-renewal in MSCs
Self-renewal and differentiation potential are hallmarks for stem cells. The ability of a cell to produce similar replicates in a defined period of time via mitosis is called self-renewal. In this type of mitosis, genetic properties and karyotype of daughter cells remain intact, the same as the mother cell. There are two models that explain stem cell self-renewal property: symmetric and asymmetric cell division. In symmetric cell division, the stem cell divides into two daughter cells, similar to the mother cell, which have the capacity to differentiate under appropriate conditions (Potten and Loffler, 1990). In asymmetric cell division, each stem cell divides into one stem cell and one progenitor cell. The stem cell continues to divide and replenish the stem cell pool, while the progenitor cell differentiates under appropriate conditions (Sherely et al., 1995). Therefore, through this type of cell division, the number of stem cells remains intact.

While identification the underlying molecular mechanisms of MSCs self-renewal would be beneficial to stop replicative senescence in MSCs, this issue remains largely unknown. According to the literature, various cytokines and growth factors such as LIF (Jiang et al., 2002), FGFs (Zaragosi et al., 2006) and Wnt proteins (Kleber et al., 2004) have, however, some roles in keeping MSCs in a stemness state.

2.4.4 Immunomodulatory properties of MSCs
The immunomodulatory property of MSCs is one of the most considerable issues in the field of regenerative medicine. Numerous evidences exist on the suppressive effects of MSCs on immune cell activity. Co-culturing MSCs with T-lymphocytes results in the inhibition of T cell proliferation (Di Nicola et al., 2002). This effect is believed to be mediated by secretion of soluble factors that include interleukin 10, prostaglandins and hepatocyte growth factor as well as TGF-beta or via direct cell to cell contact (for review see Bassi et al., 2011). Besides T-lymphocytes, MSCs insert their immunomodulatory effect by inhibition of B cell proliferation and antibody secretion (Rasmussen et al., 2007). Reportedly, they also suppress differentiation, maturation and activation of dendritic cells (Nauta et al., 2006 as cited in Bassi et al., 2011). Moreover, MSCs can suppress natural killer (NK) cell proliferation and change their phenotype, cytokine secretion and cytotoxic properties (Sotiropoulou et al., 2006). MSCs express an intermediate level of MHC class I, very low levels of MHC class II and do not express costimulatory molecules (Klyushnenkova et al., 2005).

Although the hypo-immunogenic properties of MSCs have roused medical interest to establish allogenic MSC banks for clinical application in the field of regenerative medicine, there remains one important question that must be taken into consideration: Do MSCS keep their immunomodulatory properties even after differentiation? Liu et al. have used MSCs from a rabbit model to answer this question (Liu et al., 2006). Their results have shown that osteogenic differentiated MSCs did not express MHC class II in vitro; however, transplantation of the differentiated cells makes these cells lose their immunomodulatory properties in vivo.
3. MSC-based bone constructs

As mentioned, bone construct fabricated using scaffolds, cells and growth factors would be appropriate substitutes for bone grafts. Cells were previously described. In this part of the chapter, scaffolds and growth factors will briefly be considered and followed by some important issues in the field of bone engineering, including cell seeding onto scaffold, commonly-used bioreactors in bone engineering and the issue of the construct vascularity.

3.1 Scaffolds

Bone, as a dynamic and supportive tissue, is a nanocomposite structure. It is in fact a complex of well-organized inorganic–organic nanomaterials including hydroxyapatite [HA, Ca\textsubscript{10} (P\textsubscript{O}_4\textsubscript{6} (OH)\textsubscript{2})] and collagen fibrils arranged in a masterly order (Maddela et al., 2010). Within this biomaterial composite, osteocytes lie in cavities referred to as lacunae. In bone tissue engineering, material scientists attempt to make biocompatible and biodegradable scaffolds with appropriate porosity, mechanical strength and hydrophobicity comparable to native bone materials (Lee et al., 2007 as cited in Maddela et al., 2010). Biocompatibility is the most important characteristic of scaffolds, which means that the scaffold material must not be toxic or promote inflammation upon transplantation. All scaffold degradation products should also be biocompatible. The scaffold must also be biodegradable meaning that it gradually degrades at the implantation site in harmony with bone regeneration in order to provide spaces for natural bone growth. Scaffold porosity is another characteristic that merits consideration in designing scaffolds. Incorporation of open and interconnective pores into the scaffold structure is essential in terms of cell growth and distribution, facilitation of vessel formation and diffusion of nutrient and waste products. The size of pores is recommended to be around 200-900 micrometers. If they are too small cells may adhere to the scaffold’s superficial part. Large pore size, on the other hand, compromises scaffold strength. Since bone construct should be implanted at the defective bone site where it must temporary support the fracture, therefore bone scaffolds must possess mechanical properties comparable to native bone. The scaffold’s surface property, in terms of chemical and topographical features, is a parameter that influences scaffold interaction with cells. Scaffolds must possess appropriate surfaces upon which cells can adhere, proliferate and differentiate.

Materials used to fabricate bone scaffolds include natural and synthetic bioceramics, natural and synthetic polymers and composites of polymers with bioceramics.

3.1.1 Bioceramics

There are two categories of bioceramics: naturally occurring (i.e., coral hydroxyapatite) and synthesized (i.e., synthetic hydroxyapatite and tricalcium phosphate). These materials are widely used in medical trials, orthopedics (for review see Block et al., 2000; Heini et al., 2001; Katti et al., 2004; Taksali et al., 2004 as cited in Habraken et al., 2010) and plastic surgery (Gladstone et al., 1995) due to their high mechanical strength and body response (Habraken et al., 2010). In particular, hydroxyapatite-based calcium phosphate compounds and bioactive glass are a focus of interest for bone engineering because they possess osteoconductive properties (LeGeros et al., 2002; Kenny et al., 2003). There are, however, several disadvantages that limit the application of bioceramics in the tissue engineering field. These materials possess low biodegradability and they bind strongly to growth factors.
such as bFGF and TGF-β3, releasing them at very slow rates unsuitable for clinical applications (Habraken et al., 2010). Moreover, ceramics possess low tensile strength and are very brittle.

3.1.2 Polymers
As a whole, based on origin, polymers can be divided into two categories: natural and synthetic (Lee et al., 2007). The most widely used natural polymers in bone tissue engineering include collagen, alginate and chitosan. Collagen can be easily solubilized in physiological fluid (Lee et al., 2007; Maddela et al., 2010). Beside this advantage, immunogenicity, hard processing and the possibility of pathogen transmission are the most prominent disadvantages of natural polymers. Among natural polymers, collagen type I is very interesting since it is the pivotal organic component of bone matrix that is actively secreted by osteoblast cells (Lee et al., 2007). Although this protein in the form of a gel, nanofiber, porous scaffold and film is biocompatible, it cannot tolerate mechanical forces and consequently undergoes degradation at the implant site. Thus, natural polymers are rarely used alone.

Synthetic biodegradable polymers include polyglycolic acid (PGA), polylactic acid (PLA), polylactic-co-glycolic acid (PLGA), polycaprolacton (PCL), polypropylene fumarate (PPF), polycaprolacton fumarat and polycaprolacton diacrylate. Synthetic polymers are appropriate options as bone engineering scaffolds because they can be fabricated in large quantities, the risk of infection and toxicity is less compared to natural polymers. In addition, they possess less immunogenicity. Other advantages of synthetic polymers are their mechanical, physical, and chemical properties, elastic module, acidity and hydrophilicy which can easily be adjusted to match bone tissue. The disadvantages of synthetic polymers however include their very low strength that worsens with the introduction of pores to form tissue engineering scaffolds. Furthermore, most of these materials are considered non-oste conducive (Behravesh et al., 1999; Middletone et al., 2000).

3.1.3 Composite scaffolds
The composite strategy has emerged with the purpose of seeking better scaffolds for bone tissue engineering. In this strategy, the objective is to combine bioceramic material with polymers to make use of the advantages of each biomaterial. In this manner, many polymer-based scaffolds that consist of bioactive bioceramics such as hydroxyapatite/PLLA have been produced (Zandi et al., 2010; Eslaminejad et al., 2007). In composite scaffolds, bioceramics serve to make the scaffold osteoconductive and provide reinforcement whereas the polymer serves to solve the problem of poor degradability, low tensile strength and brittleness of ceramics (Wang 2005).

3.2 Growth factors
Bone normal development involves a variety of hormones, cytokines and growth factors. These biomolecules regulate osteoprogenitor proliferation, migration and differentiation in a controlled manner (for review sees Kain et al., 2005, Schmidmaier et al., 2006). The following growth factors have been reported to play some role in bone differentiation; hence they can be used in bone engineering.
3.2.1 Bone morphogenetic protein
Urist et al. in 1965 have reported that decalcified bone can induce the formation of ectopic bone; therefore they concluded that osteoinductive molecules could be present in the bone matrix and direct the differentiation of precursor cells into bone cells. Later these molecules were called bone morphogenetic proteins (BMPs) and are members of the TGF-beta superfamily. BMP-2, 4 and 7 are the main members of this category with a considerable effect on the induction of bone formation (Kirker et al., 2000; Yoon et al., 2004).

3.2.2 Insulin-like growth factor
Insulin-like growth factor (IGF) induces proliferation and chemotactic migration of many types of cells. This growth factor has an important role in bone metabolism (Matsuda et al., 1992) especially at the time of fracture healing (Chen et al., 2006).

3.2.3 Fibroblast growth factor
The fibroblast growth factor (FGF) family has a conflicting role in osteogenesis and bone healing. While some authors have reported a positive effect of FGF-2 on bone healing (Kawaguchi et al., 1994; Kato et al., 1998), others have indicated that bFGF induces osteoclast formation (Nakagawa et al., 1999).

3.2.4 Vascular endothelial growth factor
This growth factor exerts its effects through induction of vascularization which in turn plays an important role in bone growth and development (Lee et al., 2007). Vascular endothelial growth factor (VEGF) also supports the survival and activity of bone-forming cells (Hsiong et al., 2000) as well as migration and differentiation of primary human osteoblasts (Mayr-Wohlfart et al., 2002; Orlandini et al., 2006).

3.2.5 Growth factor delivery in bone tissue engineering
In order to have an efficient bone healing procedure, selection of suitable vehicles and types of bioactive molecules are crucial. There are two types of immobilization methods for binding of bioactive molecules to the carrier: non-covalent (physical entrapment, surface adsorption, affinity binding or ionic complexation) or covalent (chemical conjugation).

In bone engineering either polymeric or bioceramic carriers can be used to deliver growth factors to the site of the tissue defect. PLA and PGA are two well-known polymers of alpha-hydroxyl esters and copolymers of these monomers (PLGA) are good vehicles to carry osteoinductive factors (for review see Behravesh et al., 1999; Saito et al., 2001a, as cited in Lee et al., 2007). Calcium phosphate cement (CPC), bioactive glasses, HA and beta-TCP are non-polymeric, inorganic materials that have also been processed to deliver growth factors such as TGF, beta1 and BMPs (for review see Hedberg et al., 2005; Laffargue et al., 1999; Ripamonti et al., 1992).

The design of a delivery system, in the form of three-dimensional matrices, injectable gels, and micro/nano particulates determines release kinetics and stability of growth factors in constructs (Lee et al., 2007). Furthermore, physical structure and degradation time of polymers are important parameters to determine the release behavior of growth factors (Holland et al., 2006, as cited in Lee et al., 2007).
3.3 Cell seeding onto scaffold surfaces
Bone construct is a term used to denote an engineered material that consists of different components, including scaffold/growth factors, scaffold/cells and scaffold/cells/growth factors. In the previous section incorporation of growth factor into the delivery vehicle (scaffold) was summarized. In the following sections, seeding of cells on scaffold surfaces - a crucial procedure in bone construct fabrication is discussed. Indeed, good cell-to-cell contact and acceptable dissemination of the cells within a scaffold are the results of an appropriate seeding procedure. These parameters have extensive impact on uniform well-developed bone tissue regeneration and mineralization after construct transplantation (Holy et al., 2000; Ishaug- Riley et al., 1998).

3.3.1 Static cell seeding method
Although the addition of the cell suspension onto a scaffold (static cell seeding system) is the most simple and frequently used method (Scaglione et al., 2008; Li et al., 2001), it is not a good approach for a well-elaborated bone construct with high cell density and homogenous cell distribution. This method is associated with a low seeding efficiency of approximately 10-25% (Roh et al., 2007) and a low rate of cell penetration inside the scaffold (Mo et al., 2004; Ravi et al., 2009; Ma, 2008). Even penetrated cells are unable to establish attachment with scaffold surfaces.

3.3.2 Dynamic cell seeding
Dynamic cell seeding process is a type of cell seeding usually performed with bioreactor systems. It can be categorized into two different systems: rotational seeding based on the use of hydrostatic forces (Hsu et al., 2005; Nasser et al., 2003) or vacuum seeding using pressure differentials (van Wachem et al., 1990; Williams et al., 2004). Cell seeding yields by these techniques range from 38 to 90% and 60 to 90%, respectively, compared to 10-25% for static seeding. Although the long seeding time in the rotational system and its bad impact on cell morphology limits its application, no adverse effects have thus far been reported for the vacuum seeding method (Gustavo et al., 2010).

3.3.3 Magnetic cell seeding method
Magnetic cell seeding is another technique proposed to efficiently incorporate cells inside scaffold porosity. This method involves the use of a magnetic force to attract magnetic nanoparticles attached to desired cells (Gustavo et al., 2010). There are two main approaches in this method. The first one involves the application of superparamagnetic monosized polymers such as dynabeads with the ability to bind specifically to a desired cell or protein and subsequent seeding of the cells in the scaffold by producing a temporary magnetic field. The efficiency of this method has been reported to be as much as 99% (Perea et al., 2006; Tiwari et al., 2003, as cited in Gustavo et al., 2010). The second approach is to first label desired cells by cationic liposomes that contain superparamagnetic iron oxide particles, then seed them into a scaffold by the administration of a transient magnetic force. The efficiency of this protocol has been reported to be as high as 90% (Ito et al., 2004; Shimizu et al., 2007 as cited in Gustavo et al., 2010). Rapid graft production and reproducible results are the main advantages of using this method in tissue engineering; albeit cell viability, cell morphology, as well as the fate of magnetic particles in the body and their adverse effects on other tissues need further evaluation (Gustavo et al., 2010).
3.4 Bioreactors

Bioreactors, as containers or vessels, have long been used to hold microorganisms and different types of eukaryotic cells for the purpose of harnessing their natural biochemical processes in the production of drug and recombinant proteins. The main reason to use bioreactors in industry and medicine is the large scale production of desired products at an optimal level of gas, nutrients, temperature and tolerable amount of waste products for an extended period of time (Haasper et al., 2008). Bioreactors have also found some application in the bone tissue engineering field due to valuable advantages they offer toward producing optimal bone construct. Bioreactor systems help bone tissue engineering in several ways. The bioreactor cell culture process is automated. In this manner, the risks of cellular/microbial contamination, labor intensity and laboratory costs during cell expansion and differentiation are minimized (Andrew et al., 2011). Furthermore, automated cell cultures have the advantages of improved cell seeding efficiency (Wendt et al., 2003) as well as cell proliferation (Grayson et al., 2008). Bioreactors can be used to improve nutrition of the cells located in the deep areas of the constructs during the culture period. With the use of an appropriate bioreactor system, different stress protocols (such as shear) can be applied on bone construct. There are three main commonly used bioreactor systems in bone tissue engineering: spinner flask, rotating wall and perfusion system.

3.4.1 Spinner flask

This bioreactor is a commonly used system in bone tissue engineering (for review see Ichinohe et al., 2008; Sikavitsas et al., 2002). It is composed of a vessel containing culture medium in which the tissue construct is suspended through a wire. A rotating magnetic bar causes the culture medium to agitate (Andrew et al., 2011). This system is more efficient in terms of bone differentiation compared with static and rotating wall culture systems. In spite of this positive point, the spinner flask possesses a deficiency regarding construct nutrition (Sikavitsas et al., 2002). One way to improve nutrient and waste product transport in and out of the construct is to increase the amount of rotation in the magnetic bar but this may lead to increased turbulent flow which in turn increases shear stress on the construct. It should be mentioned that although shear stress produced in the bioreactor has a positive influence on bone differentiation and mineralization (Bancroft et al., 2002, 2003; Bilodeau et al., 2006), exceeded stress may cause cellular damage. For this reason, there must always be a balance between nutrient transport efficiency and shear stress within the spinner flask.

3.4.2 Rotating wall bioreactors

This type of bioreactor is composed of two cylinders. The smaller cylinder is a stationary one inside the system and provides for gas exchange, while the outer one rotates. The cell-seeded scaffold moves freely in the medium between these two cylinders (Andrew et al., 2011; Sikavitsas et al., 2002). It is believed that this system is not a very good culture system in bone tissue engineering due to the haphazard movement of the scaffold in the system, collision with the wall of the bioreactor and the low level of shear stress provided by this regime (Andrew et al., 2011).

3.4.3 Perfusion bioreactors

This system is a widely-used bioreactor in bone tissue engineering (for review see Bancroft et al., 2003; Gomes et al., 2003; Grayson et al., 2008; Sikavitsas et al., 2005). This bioreactor is
composed of a perfusion cartridge connected to a pump and a medium reservoir through a tubing circuit. The perfusion cartridge surrounds the scaffold tightly, thus the medium cannot flow around the scaffold so it perfuse directly through the scaffold (Andrew et al., 2011). There are various types of this bioreactor. Those commonly used in bone tissue engineering include the flow perfusion culture bioreactor (for review see Bancroft et al., 2002, Gomes et al., 2003; Grayson et al., 2008; Sikavitsas et al., 2005), radial channel perfusion system (Grayson et al., 2008) and direct perfusion bioreactors (for review see Janssen et al., 2006a, 2006b, 2010). Use of the perfusion bioreactor improves nutrient and waste product transport within the construct. Cell loading efficiency is also improved in these systems since they are designed in such a way that the flow direction is repeatedly changed. Moreover, shear stress produced in this bioreactor enhances osteogenic differentiation of the loaded cells.

3.5 Vascularization
Bone construct usually encounters nutritional limitation due to a lack of microvasculature which occurs at two stages, during in vitro culture and the early days after implantation. As previously described, in vitro nutritional limitations can somewhat be improved with the application of an appropriate bioreactor system. To overcome nutritional limitation during the early days of implantation several strategies have been developed with the objective of inducing angiogenesis inside the construct.

3.5.1 Angiogenic growth factors
One strategy is to use growth factors known to promote angiogenesis when fabricating bone construct. According to the literature, angiogenic growth factors include VEGF (Mayr-Wohlfart et al., 2002; Deckers et al., 2000), FGF (Saadeh et al., 2000), BMP-2, endothelin-1 (ET-1) (Von Schroeder et al., 2003; Bouletreau et al., 2002a), PDGF-BB (Bouletreau et al., 2002b), IGF and TGF-beta (Bouletreau et al., 2002b; Saadeh et al., 1999). VEGF has a direct effect on angiogenesis whereas the others exert their effect indirectly through regulation of VEGF secretion. Although VEGF plays a pivotal role in angiogenesis, unfortunately high doses of this recombinant protein are necessary to reach an optimal level of angiogenesis (Barralet et al., 2009).

3.5.2 Design and architecture of the scaffold
Design and architecture of a bone scaffold facilitates blood vessel formation in the fabricated construct. For example, nano/micro fiber combined scaffolds have been shown to promote endothelial cell migration and organization into capillary-like structures within the scaffold (Santos et al., 2008 as cited in Marina et al., 2010). The inclusion of a network with vasculature geometry in a biocompatible polymer using microfabrication techniques has been reported as an alternative way to create vessel-like structures in scaffolds. It should be mentioned that such methods are commonly used in developing a vasculature tree in soft organs rather than hard tissues such as bone (Marina et al., 2010).

3.5.3 Co-culture system
Since endothelial cells are able to establish microcapillary-like structures, the use of them in bone construct can be considered an alternative strategy to promote vessel formation inside the construct. For this purpose endothelial progenitor cells (EPCs) from bone marrow may
be preferred. There are two types of EPCs, early and late (Veleva et al., 2008). Early cells appear within 4-7 days in culture and exhibit some endothelial as well as monocytic properties with restricted proliferative capacity. In contrast, late cells are those that appear 2-3 weeks after culture initiation and keep their expansion potential for a long time. According to investigations, while early cells contribute in neovascularization indirectly through cytokines and matrix metalloproteinase-8 (MMP-8) secretion, late cells contribute to vessel formation as building blocks as well as through MMP-2 secretion (Yoon et al., 2005, as cited in Marina et al., 2010).

3.5.4 Microsurgery strategies
Microsurgery techniques offer another approach to create blood vessel inside bone construct. Two of the most popular microsurgery methods for creating vascularized bone construct include flap fabrication and the creation of an arteriovenous loop (Kneser et al., 2006). In flap fabrication, bone construct including the scaffold, cells and growth factors pre-transplants in a rich vascular bed (i.e., muscle) from which some blood vessels grow into the construct (Scheufler et al., 2008; Polykandriotis et al., 2007). Donor-site morbidity and two surgical interventions are two disadvantages of this method (Ren et al., 2008). In the arteriovenous loop method, vascularization of the porous scaffold is performed by implantation of an arterovenous loop around the construct (Kneser et al., 2006).

4. Bone regeneration promoted by MSC-based bone constructs
As mentioned earlier, large bone defects need clinical intervention for regeneration. For this purpose bone construct fabricated using tissue engineering principles is considered as a promising choice. Different types of bone constructs will be described followed by some examples in which MSC-based bone constructs have been used to regenerate bone defects in either animal models or humans.

4.1 Types of bone construct based on constituting components
Past investigations regarding bone regeneration have used the following constructs which differed in terms of their constituting elements: scaffold, cells, scaffold/growth factor, scaffold/cells, scaffold/cells/growth factor and scaffold/DNA. Scaffold alone is more suitable for small bone defects and usually comprised of tricalcium phosphate ceramics. Cell constructs involve the administration of MSCs in an injectable form with or without genetic manipulation. Scaffold/growth factor constructs are constructs in which growth factors are linked chemically or physically to a carrier or scaffold. Scaffold/MSCs constructs are the most frequently used one in tissue engineering and many studies have been designed with this model. Sometimes the scaffold/MSC construct contains transfected cells and this indeed is a combination of gene therapy and tissue engineering. Scaffold/cells/growth factor construct, on the other hand are rarely used. An excellent example of such construct is Gronthos’ study (see below). Finally, the scaffold/DNA construct involves loading a scaffold by a DNA construct, usually in the form of plasmid DNA (Bonadio et al., 1999).

4.2 MSC-based bone construct transplantation in animal models
Before clinical application, a newly developed bone construct should be tested in animal models in term of its functionality. By pre-clinical studies scientists understand whether
regeneration occurs due to the presence of MSCs in bone constructs or the osteoconductive/osteinductive properties of the scaffold/growth factor. Among different preclinical models, large bone defect models are more commonly used since they are the type of defects problematic in the field of orthopedics as well as maxillofacial surgery (for review see Perka et al., 2000). Various worldwide animal and clinical studies have been undertaken to cure this type of bone disease. Following are some examples of animal model studies that have used MSC-based constructs.

4.2.1 MSCs alone
An example of the application of MSCs in an animal bone defect model is a study conducted by Tsuda et al. who used MSCs transfected with BMP-2 to improve an osteoporotic disorder of aged rats (Tsuda et al., 2005).

4.2.2 Scaffold/MSCs
The application of bone constructs that consist of scaffold/MSCs is a common strategy to heal large bone defects, also referred to as critical sized defects in animal models. In most studies bioceramics are the biomaterial of choice. Kadiyala et al. have used autologous bone marrow-derived MSCs seeded onto ceramic scaffolds to regenerate an 8-mm experimentally-created defect in the rat femora. After eight weeks, bone formation was detected in the defective area (Kadiyala et al., 1997b). Similar animal studies have also been reported for canine and sheep models using scaffold/MSCs constructs (For review see Arinzeh et al., 2003; Kon et al., 2000). Application of varying ceramics in different ratios would be very crucial for fabricating a good construct. For example, Bruder et al. have fabricated MSC-based scaffolds comprised of 35% beta tricalcium phosphate and 65% hydroxyapatite which was implanted in a 21-mm experimentally-created segmental defect in the canine femur. They observed good integration of the construct with the host bone (Bruder et al., 1998). Using ceramic biomaterials we have also conducted some investigations. According to our studies, the use of rat MSCs in conjunction with natural scaffolds (i.e., Bio-Oss or human deproteinized and decellularized bone tissue) could enhance bone regeneration in rat calvarial defects more than platelet-rich plasma treatment (Khojasteh et al., 2009). In another study, we have compared the bone regeneration capacity of HA/TCP/MSCs with Bio-Oss/MSC constructs. Our results have shown the enhanced bone regeneration potential of HA/TCP/MSCs construct in a canine full-thickness alveolar defect model (Jafarian et al., 2008) compared with Bio-Oss/MSCs constructs.

Other research groups have studied the regenerative role of MSCs in combination with polymeric scaffolds in animal bone defects. For example, in a study by Holy et al., 1.2 cm bone defects in a rabbit femur were regenerated by using MSCs-loaded PLGA scaffolds. Their results have shown significant bone regeneration in MSC-based PLGA scaffolds compared with PLGA alone (Holy et al., 2003).

The composite scaffold/MSCs construct has also been tested in animal bone defects. For example, Diao et al. have manufactured a construct comprised of umbilical cord blood MSCs seeded on composite scaffold consisting of hydroxyapatite, PLLA and collagen. The composite, then, was implanted subcutaneously into SCID mice. Twelve weeks later, well-promoted bone formation was observed in histological sections (Diao et al., 2009).

MSCs derived from sources other than bone marrow have been successfully applied to regenerate bone defects in combination with scaffolds. For example, the construct made of
porous cylindrical PLA scaffolds and autologus adipose-derived stem cells have been reported to successfully regenerate skull defects in New Zealand white rabbits (Bella et al., 2008). Similarly, Jang et al. have noted the efficiency of construct comprised of beta TCPs and canine umbilical cord blood MSCs in canine cortical defect regeneration (Jang et al., 2008).

4.3 MSC- based bone construct in clinical trials

The ultimate objective of elaborating bone construct using principles of tissue engineering is to find an appropriate substitute for autologous bone graft which is considered the golden standard for regeneration of bone defects. The excellent regenerating effects of autologous bone graft may be related to its osteoconductive, osteoinductive and osteogenic capacities. Constructs fabricated by engineering principles using all three main building blocks have potentially all components necessary for real representation of autologous bone graft.

In bone construct, MSCs can be present either in an undifferentiated or differentiated state. Using MSCs as undifferentiated cells may have the disadvantage of their unwanted differentiation into non-bone cells where they are supposed to generate osteogenic cells. On the other hand, transplantation of MSCs as fully differentiated cells would be an alternative way to deliver cells into a bone defect. This requires long-term culture of the cells which is undesirable in a cell therapy strategy. Both strategies have been used in clinical trials.

At the moment, multiple clinical trials have been accomplished on human problematic bone lesions. Several others are ongoing and registered at http://clinicaltrials.gov, the official clinical trials website. In this regard, Royan Institute has registered a number of clinical trials regarding nonunion fractures, delayed union, bone cyst and distraction osteogenesis, using MSC-based bone constructs. In the following section some accomplished trials will be noted which are categorized according to the composition of the construct used.

4.3.1 MSCs alone

One well known example of the use of MSCs alone to regenerate osteogenic defects is in the treatment of osteogenesis imperfecta (OI), a heterogenous group of inherited disorders. Horwitz et al. have reported a trial in which allogenic bone marrow cells (from HLA-identical or single- antigen-mismatched siblings) have been intravenously infused into children with severe OI. According to their findings, there have been signs of improvement after transplantation as they observed a reduced number of osteocytes, linearly organized osteoblasts, lamellar bone formation as well as mineralization in the trabecular bones of affected children. Although this study demonstrated osteoblastic differentiation of MSCs, the lack of reliable controls and the absence of a long follow up period were the weak points of this clinical study (Horwitz et al., 1999). To fulfill this trial, Horwitz continued his study in another project in 2001 in which seven children with OI were selected. Five received cell therapy while two were in the control group. Six months after transplantation, growth acceleration was observed in the treated group in comparison with control children (Horwitz et al., 2001).

Another example of MSCs injection is with tibial achondroplasia and pseudoarthrosis in which distraction osteogenesis is necessary. To accomplish this, in vitro osteogenic differentiated marrow MSCs accompanied by platelet-rich plasma were injected into the distracted callus. After a period of time, healing was observed in treated patients (Kitoh et al., 2004).
4.3.2 Scaffold/MSCs/growth factor
Constructs consisting of three components have rarely been utilized to regenerate human bone defects. An example is the work by Gronthos who has tried to regenerate a 7-cm length mandibular defect generated due to tumor resection in a 56 year old patient. In this study, he designed a hollow titanium mesh, filled it with hydroxapatite, recombinant human BMP-7 and MSCs, and transplanted it into the patient’s lathismus dorsi muscle in order to encourage ectopic bone formation and blood vessel ingrowth. Seven weeks later, vascularized bone construct was removed and implanted into the patient’s mandible. Four weeks post-transplantation, the mandible was functional and the patient could chew food (Gronthos, 2004).

4.3.3 Scaffold/MSCs
Scaffold/MSCs constructs are commonly used constructs in most clinical trials. There are several examples of such approaches in the literature. One such example is the work by Quarto et al. who have designed bone marrow MSC-loaded hydroxyapatite scaffolds to regenerate 7-cm length human bone defects. Two months after transplantation, a large callus formed in the defect site with integration of the construct into host bone (Quarto et al., 2001). In a similar study, Morishita et al. have published successful bone tissue engineering approaches in the treatment of bone tumors by the implantation of autologous MSCs-loaded hydroxyapatite scaffold (Morishita et al., 2006). Similarly Marcacci et al. have prepared constructs using autologous MSCs and hydroxyapatite scaffold, and have transplanted them into long bone defects in humans. Their trial was prominent since they had a prolonged follow up of 6-7 years. Using this method, they could detect good integration of the loaded scaffolds with surrounding bone, new vascular ingrowth and new bone formation inside the scaffold. Recovery of limb function was also reported and maintained after the 6-7 year follow up (Marcacci et al., 2007).

5. Conclusion
Bone constructs elaborated with tissue engineering principles are a promising substitute for autologous bone graft and have long been considered the golden standard for repair of large bone defects. Autologus bone graft owes its excellent repair effects to three crucial properties of osteoinduction, osteoconduction and osteogenesis. The building blocks that are used to fabricate bone construct impart three key properties as autologous bone graft (cells impart osteogenic property, scaffold cause osteoconductive and osteoinductive capacity and growth factors give osteoinductive potential). However, before tissue-engineered bone construct are to be routinely used in the clinic setting instead of bone grafts, several issues must be addressed. Although application of MSCs as cellular material facilitates the construct fabrication, there is still some issue with MSC preparation. MSC propagation is largely dependent on fetal bovine serum. Furthermore, natural bone is a composite of nano hydroxyapatite particles with collagen nanofibers which impart the tissue’s unique properties. Unfortunately developing a scaffold with similar properties is still challenging. Finally, perhaps the main challenge in the field of bone tissue engineering is formation of blood vessels inside the fabricated constructs. Several strategies including the addition of angiogenic growth factors and cells to the construct, angiogenic design and architecture of bone scaffold, and microsurgery techniques have been proposed to promote angiogenesis.
inside the constructs. However, there is no reliable, reproducible and practical strategy in this developing field.

6. References

From Multipotent Cells to Fully Differentiated Connective Tissue Cells for Regenerative Medicine: Emerging Applications of Mesenchymal Stem Cells

Ali Mobasheri¹, Stephen M. Richardson², Judith A. Hoyland², Constanze Buhrmann³ and Mehdi Shakibaei³

¹Musculoskeletal Research Group, Division of Veterinary Medicine, School of Veterinary Medicine and Science, Faculty of Medicine and Health Science, The University of Nottingham, Sutton Bonington Campus, Leicestershire, United Kingdom
²Developmental Biomedicine Research Group, School of Biomedicine, Faculty of Medical and Human Sciences, The University of Manchester, Stopford Building, Oxford Road, Manchester, United Kingdom
³Musculoskeletal Research Group, Institute of Anatomy, Ludwig-Maximilian-University Munich, Munich, Germany

1. Introduction

Mesenchymal stem cells (MSCs) are a heterogeneous subset of stromal cells that can be isolated from many adult tissues (Uccelli et al., 2008). Adult MSCs can be isolated from bone marrow, marrow aspirates, skeletal muscle, adipose tissue (Guilak et al., 2010), synovium and many other connective tissues (Barry, 2003). Due to their culture-dish adherence, they can be expanded in culture while maintaining their multipotency (Caplan, 2007). Their multipotency is an important property that allows them to differentiate into cells of the mesodermal lineage, giving rise to a range of specialized connective tissue cells including adipocytes, osteoblasts, chondrocytes and tenocytes as well as cells of other embryonic lineages (Figure 1) (Uccelli et al., 2008). MSCs have been isolated from humans and a variety of animal species including rodents, rabbits, dogs and horses. MSCs show considerable promise for use in repairing and rebuilding damaged or diseased mesenchymal tissues (Caplan, 2007). After in vivo administration, MSCs can induce peripheral tolerance and migrate to injured tissues where they have the capacity to exert immunosuppressive properties (Uccelli et al., 2007) and inhibit the release of pro-inflammatory cytokines and promote the survival of existing cells and the repair of damaged tissue (Uccelli et al., 2008). They are being clinically explored as a new therapeutic for treating a variety of immune-mediated diseases (Parekkadan and Milwid, 2010). Thus, they have potential applications in tissue engineering and regenerative medicine and may represent an attractive option for bone, cartilage, tendon and ligament regeneration.
This chapter focuses on the potential of MSCs as an alternative to cells derived from patient tissues in autologous transplantation and tissue engineering. The prospects of using MSCs in regenerative medicine strategies are discussed and the advantages and disadvantages of these cells in articular cartilage tissue engineering are summarized. There is currently little consensus on how MSCs are best isolated, identified and characterized. This is partly due to the paucity of standardized specific cell surface markers. Although MSCs cells have been isolated and expanded in culture, their use for therapeutic strategies requires protocols and technologies that have not yet been clinically trialled and perfected (Caplan, 2005). Also, there are no established guidelines from governmental and intergovernmental agencies for their use in clinical applications. Even if these guidelines existed, more research is needed to help understand their basic biology since the therapeutic effects afforded by MSC transplantation are likely to be short-lived and related to dynamic, paracrine interactions between MSCs and host cells (Parekkadan and Milwid, 2010). MSCs possess a fibroblastic morphology but the published literature suggests that there is no well-defined phenotype for these cells. More work is needed to characterise the phenotype of these cells. This chapter will also focus on the conceptual and practical difficulties associated with differentiating and preconditioning MSCs for subsequent survival in a physiologically harsh extracellular matrix, an environment that will be highly hypoxic, acidic, and nutrient deprived. Interestingly, published data suggests that MSCs better differentiate into chondrocytes in low oxygen environments.

2. Increasing life expectancy and the growing burden of musculoskeletal and joint diseases

For the past 160 years human life expectancy has consistently increased by a quarter of a year every year (Oeppen and Vaupel, 2002). It is predicted that life expectancy will continue
to increase by 2.5 years each decade, meaning that the western world's average life expectancy should reach and exceed 100 within the next 50 years (Oeppen and Vaupel, 2002). The increase in life expectancy has been mainly due to the significant advances in medicine and healthcare. However, the increased longevity of humans has greatly expanded the elderly population in the western world and has resulted in the increased prevalence of a range of arthritic, rheumatic and musculoskeletal disorders, which are placing an ever-greater socioeconomic burden on health systems around the world as the population ages. According to the World Health Organization (WHO)\(^1\), orthopaedic, rheumatic and musculoskeletal conditions comprise over 150 diseases and syndromes, which are usually progressive and associated with pain and disability. They can broadly be categorized as joint diseases, physical disability, spinal disorders, and conditions resulting from trauma. These conditions are leading causes of morbidity, giving rise to enormous healthcare expenditures and loss of productivity. Knowledge of the key determinants of disability in musculoskeletal conditions is critical for reducing their burden on the world's growing population (Oeppen and Vaupel, 2002; Weigl et al., 2008).

The United Nations, the WHO and 37 other countries have proclaimed the years 2000-2010 as the Bone and Joint Decade\(^2\) (McGowan, 2003; Woolf and Pfleger, 2003). This global initiative is intended to improve the lives of people with musculoskeletal disorders, such as arthritis, and to advance understanding and treatment of musculoskeletal disorders through prevention, education and research. The 10-year global initiative launched by the UN urges governments around the world to start taking action to draw attention to the growing pervasiveness and impact of musculoskeletal diseases and to reduce the social and financial burdens to society. Support for this global initiative will raise awareness of musculoskeletal health, stimulate research and improve people's quality of life.

Musculoskeletal diseases are one of the major causes of disability around the world and have been a significant reason for the development of the Bone and Joint Decade (Brooks, 2002; McGowan, 2003; Woolf and Pfleger, 2003). Rheumatoid arthritis (RA), osteoarthritis (OA), gout and back pain are important causes of disability-adjusted-life years in both the developed and developing world (Brooks, 2006). The Arthritis Foundation\(^3\) in the United States plays a key role in co-ordinating efforts during the Bone and Joint Decade as a supporter. Its aims are to:

- Raise awareness and educate the world on the increasing societal impact of musculoskeletal injuries and disorders
- Empower patients to participate in decisions about their care and treatment
- Increase global funding for prevention activities and treatment research
- Continually seek and promote cost-effective prevention and treatment of musculoskeletal injuries and disorders

The major consequence of all forms of arthritis is joint dysfunction, disability, chronic pain, and significant morbidity. Aside from analgesics, there are currently no effective pharmacotherapies capable of restoring the structure and function of damaged synovial tissues in any form of arthritis. Consequently, there is an acute need for developing new tissue engineering and regenerative medicine strategies for arthritis.

\(^1\) http://www.who.int/en/
\(^2\) http://www.arthritis.org/bone-joint-decade.php
\(^3\) http://www.arthritis.org/
3. The inflammatory component of musculoskeletal and joint diseases

Many rheumatic diseases and arthritic conditions are essentially inflammatory disorders. The term “arthritis” characterizes a group of conditions involving damage to synovial joints. Arthritis literally means an inflammation (*itis*) of the joints (*arthr*). It involves pain, redness, heat, swelling and other harmful effects of inflammation within the joint. The most common form OA (also known as osteoarthritis or degenerative joint disease) can result from trauma to the joint, infection of the joint, or simply as a consequence of ageing. Other forms of arthritis include psoriatic arthritis, and autoimmune diseases in which the body’s immune system attacks itself such as RA. Inflammation plays slightly different roles in OA and RA. Inflammation is primarily the result of OA but in RA it is the root cause. The major consequence of arthritis is pain and disability. Pain is a constant and daily feature in well-established forms of the disease. Arthritis pain occurs due to inflammation that occurs around the joint, damage to the joint from disease, daily wear and tear of joint, muscular strains caused by movement against stiff, painful joints and fatigue. Disability in patients with arthritis is a consequence of degeneration in the joint and surrounding tissues and is further enhanced by inflammation-induced pain.

4. Rheumatoid Arthritis (RA), Osteoarthritis (OA) and Lower Back Pain (LBP)

The number of rheumatoid arthritis (RA) and osteoarthritis (OA) patients steadily rises as the elderly population grows in Western Europe, North America, and the rest of the developing world. RA, OA, and lower back pain (LBP) are important causes of disability adjusted-life years in both the developed and developing world (Brooks, 2006). Back and knee pain are common in the community and are likely to increase with the aging population (Brooks, 2006). Until recently OA was viewed as a “degenerative” or “wear-and-tear” disease and held little interest for most clinicians. It is now accepted that the age related degeneration of articular cartilage as part of the clinical syndrome of OA is one of the most common causes of pain and disability in middle-aged and older people (Brooks, 2006). RA, OA and LBP pain are among the major causes of disability and morbidity within the adult population. OA is the most common form of joint disease, with the majority of the population over 65 years of age demonstrating radiographic evidence of OA in at least one joint. Likewise, around two-thirds of the adult population suffer from LBP at some point in their lifetime. LBP is also a major cause of disability and suffering globally (Grabias and Mankin, 1979; Jackson, 2004). LBP OA and RA are important causes of disability and are increasingly among the ageing population. LBP is also common among younger athletes and those older individuals who enjoy sports such as golf (Baker and Patel, 2005; McHardy and Pollard, 2005; Reed and Wadsworth, 2010).

The current inadequacy of treatments for these conditions, combined with their increasing prevalence exacerbates the burden on healthcare systems. Therefore, researchers and clinicians are striving for novel, innovative treatment options and the emergence of the fields of tissue engineering and regenerative medicine offer hope that long-term tissue repair may be possible. However, one of the current limiting factors for treatment of joint diseases is a source of cells. While a range of cell sources have been proposed, adult mesenchymal stem cells (MSCs) offer the greatest potential for clinical application. Many studies have explored the prevalence of arthritis (OA and RA), related musculoskeletal conditions, LBP and intervertebral disc degeneration among elderly
population. Chronic LBP is a major complaint of elderly patients and restricts most of their activities (with a higher prevalence in women). Interestingly LBP increases with age in men to reach the same frequency as women in those aged 90 years or older. Many studies have shown that a major cause of LBP is intervertebral disc degeneration, which is, primarily, an ageing related phenomenon. Degeneration of the intervertebral disc impacts not only on the disc, but also on the surrounding tissues such as the muscles and ligaments and affects the spine’s ability to cope with the physiologically normal loads it experiences during a daily routine. As well as accelerating degeneration these changes also cause pain and reduce the mobility of the spine. The drug treatments currently available for LBP are inadequate and restricted to symptomatic pain control in mild cases and complicated and invasive surgical intervention (i.e. discectomy or spinal fusion) in severe cases. The increasing prevalence of LBP among the ageing population will become a major socioeconomic issue as it exacerbates the burden on healthcare systems throughout the developed world. Therefore new treatments are needed which restore full disc function and normalise disc cell biology.

5. Regenerative medicine for RA and OA

Bone and cartilage defects are common features of joint diseases, such as RA and OA (Noel et al., 2002). They have significant social and economic impact on the aging population. Despite progress in orthopaedic surgery, bone and cartilage repair is a major challenge as large defects will not spontaneously heal (Noel et al., 2002). Regenerative medicine is an emerging field that seeks to repair or replace injured tissues and organs through natural or bioengineered means. Recent research on stromal MSCs has provided a new and exciting opportunity for bone and cartilage tissue engineering. We have learned a great deal about the isolation, cultivation, and characterization of MSCs in recent years. A huge amount of research effort is now focused on their differentiation and models that exploit their regenerative potential. MSCs have generated a great deal of public, scientific, and media interest because of their potential use in regenerative medicine and tissue engineering (Tolar et al., 2010).

6. Structure and function of articular cartilage

Cartilage is a flexible and mechanically compliant connective tissue found at the end of long bones in articulating joints and in the intervertebral disc. It is sub-classified into three different types: elastic cartilage, hyaline cartilage and fibrocartilage, which differ in the relative amounts of its three principal components, namely collagen fibres, ground substance (proteoglycans) and elastic fibres. Articular or hyaline cartilage is a load-bearing tissue with unique biological characteristics (Figure 2). The biochemical properties of cartilage depend on the structural design of the tissue, the molecular composition of the extracellular matrix (ECM) that makes up the bulk of the tissue volume and the interactions between its resident cells and the ECM (Buckwalter and Mankin, 1998). Chondrocytes are the only cells found within the cartilage ECM. They are architects of cartilage (Muir, 1995), building the macromolecular framework of its ECM from three distinct classes of macromolecules: collagens (predominantly type II collagens), proteoglycans (mainly aggrecan), and a variety of non-collagenous proteins. Collagens type II, IX, and XI form a fibrillar meshwork that gives cartilage tensile stiffness and strength (Buckwalter and Mankin, 1998; Eyre, 2004; Kuettner et al., 1991), whereas collagen type VI forms part of the
matrix immediately surrounding the chondrocytes, enabling them to attach to the macromolecular framework of the ECM and act as a transducer of biomechanical and biochemical signals in the articular cartilage (Guilak et al., 2006; Roughley and Lee, 1994). Large aggregating proteoglycans (aggrecan) are embedded in the ECM and give cartilage its stiffness to compression, its resilience and contribute to its long-term durability (Dudhia, 2005; Kiani et al., 2002; Luo et al., 2000; Roughley and Lee, 1994). Figure 3 illustrates the major molecular components of the cartilage ECM.

![Fig. 2. A section of porcine articular cartilage showing the superficial, middle, deep and calcified zones](image)

ECM proteins in cartilage are of great significance for the regulation of the cell behaviour, proliferation, differentiation and morphogenesis (Enomoto-Iwamoto et al., 1997; Gonzalez et al., 1993; Hewitt et al., 1982; Kosher and Church, 1975; Kosher et al., 1973; Ramachandruma et al., 1992; Ruoslahti and Reed, 1994; Sommarin et al., 1989; von der Mark et al., 1977). Small proteoglycans, including decorin, biglycan, and fibromodulin are further embedded in the ECM. Decorin and fibromodulin both interact with the type II collagen fibrils in the matrix and play a role in fibrillogenesis and interfibril interactions. Biglycan is mainly found in the immediate surrounding of the chondrocytes, where it may interact with collagen type VI (Buckwalter and Mankin, 1998; Roughley and Lee, 1994). Modulation of the ECM proteins is regulated by an interaction of a diversity of growth factors with chondrocytes (Hunziker et al., 1994; Isgaard, 1992; Jenniskens et al., 2006; Sah et al., 1994; Trippel et al., 1989). In fact, it has been reported recently, that IGF-I and TGF-β stimulate the chondrocyte surface expression of integrins, and that this event is accompanied by increasing adhesion of chondrocytes to matrix proteins (Loeser, 1997). Other non-collagenous proteins in articular cartilage such as cartilage oligomeric matrix protein (COMP) are less well studied and may have a value as a biomarker of turnover and degeneration of cartilage (Di Cesare et al., 1996), while tenascin and fibronectin influence interactions between the chondrocytes and the ECM (Buckwalter and Mankin, 1998; Burton-Wurster et al., 1997). The ECM surrounds chondrocytes and protects them from biomechanical stress arousing during normal joint motion, determines the types and concentrations of molecules that reach the cells and helps to maintain the chondrocyte phenotype.
Throughout life, cartilage undergoes continuous internal remodelling as chondrocytes replace matrix macromolecules lost through degradation. Evidence indicates that ECM turnover depends on the ability of chondrocytes to detect alterations in the macromolecular composition and organization of the matrix, including the presence of degraded macromolecules, and to respond by synthesizing appropriate types and amounts of new ECM components. It is known that mechanical loading of cartilage creates mechanical, electrical, and physicochemical signals that help to direct the synthesizing and degrading activity of chondrocytes (Mobasheri et al., 2002). In addition, the ECM acts as a signal transducer for chondrocytes (Millward-Sadler and Salter, 2004). A prolonged and severe decrease in the use of the joint leads to alterations in the composition of the ECM and eventually to a loss of tissue structure and its specific biomechanical properties, whereas normal physical strain stimulates the synthesizing activity of chondrocytes and possibly the internal tissue remodelling (Buckwalter and Lane, 1997; Maffulli and King, 1992).

Although articular cartilage can tolerate a tremendous amount of intensive and repetitive physical stress, it manifests a striking inability to heal even the most minor injury (Buckwalter, 2003; Buckwalter and Lane, 1997; Martin et al., 2004; Newman, 1998). This makes joints particularly sensitive to degenerative processes (Solursh, 1991). Furthermore, aging leads to alterations in the ECM composition and alters the activity of the chondrocytes, including their ability to respond to a variety of stimuli such as growth factors (Eckstein et al., 2001; Hudelmaier et al., 2001; Ralphs and Benjamin, 1994). All these alterations increase the probability of cartilage degeneration (Buckwalter, 2003; Poole, 1999; Sarzi-Puttini et al., 2005; Setton et al., 1999) and emphasize the importance of interaction of chondrocytes with their surrounding ECM since this interaction regulates their growth, differentiation, and survival in normal and pathophysiologicaconditions such as OA (Shakibaei et al., 1999).
7. Identification and application of Adult Stem Cells

There are two types of stem cells: embryonic stem cells and non-embryonic "somatic" or "adult" stem cells. Embryonic stem cells are found in the blastocyst whereas adult stem cells are found in adult tissues. Adult stem cells maintain the normal turnover of organs with a high intrinsic regenerative capacity. These include blood, skin and intestinal epithelium. Adult stem cells can be found in children, adolescents as well as adults and are generally unipotent or multipotent. Pluripotent adult stem cells are very rare and are generally found in small numbers. However, they can be found in a number of tissues including umbilical cord blood. The best studied adult stem cells are multipotent and are generally referred to by their tissue origin (i.e. haematopoietic stem cells that differentiate into erythrocytes, white blood cells, platelets, etc. and bone marrow stromal cells also known as MSCs which have the capacity to differentiate into connective tissue cells (Pittenger et al., 1999) (see Figure 4).

![Mesenchymal Stem Cell Diagram](image)

Fig. 4. Differentiation potential of human mesenchymal stem cells

These connective tissues include bone (Arinzech, 2005; Hong et al., 2006; Noel et al., 2002), fat (Barry and Murphy, 2004; Helder et al., 2007), cartilage (Barry and Murphy, 2004; Caplan, 2007; Noel et al., 2002), intervertebral disc (Richardson et al., 2007; Trubiani et al., 2005; Trubiani et al., 2006), ligament (Sonoyama et al., 2006; Trubiani et al., 2005; Trubiani et al., 2006) and muscle (Barry and Murphy, 2004). Evidence suggests that these cells are also capable of differentiation along myogenic and neurogenic lineages, although these pathways are not normally utilised to demonstrate multipotentiality of isolated MSCs. Adult mesenchymal stem cells were originally isolated from bone marrow in 1999 by Pittenger and co-workers, who demonstrated their multilineage differentiation potential (Pittenger et al., 1999). Subsequent studies have identified the presence of stem cells in a number of adult tissues, including adipose, muscle, dermis, periosteum, synovial membrane, synovial fluid and articular cartilage. Thus far MSC-like progenitor cells have
been isolated from bone marrow (Grigoriadis et al., 1988), periosteum, trabecular bone, adipose tissue, synovium, skeletal muscle and deciduous teeth (Barry and Murphy, 2004; Sonoyama et al., 2006). In fact they were known as marrow stromal cells long before they were known as MSCs (Grigoriadis et al., 1988). The International Society for Cellular Therapies has recently proposed a definition for MSCs (Dominici et al., 2006). While there are no definitive markers of MSCs a range of cell surface markers are routinely used as markers of MSCs. These include immunopositivity for STRO-1, CD73, CD105, CD106 CD145 and CD166, combined with negative immunoreactivity for CD11b, CD31, CD34, CD45 and CD117. These markers can also be used to identify a more homogeneous population of cells than previous methods utilising either density-gradient centrifugation, or even simple plastic adherence. The general heterogeneity of bone marrow cell populations can lead to variable results; however MSCs are generally regarded to be capable of differentiation along the chondrogenic, osteogenic and adipogenic pathways. Work from our laboratories suggests that MSCs are capable of differentiation to nucleus pulposus (NP) cells of the IVD, chondrocytes and osteoblasts (Csaki et al., 2009; Csaki et al., 2007; Mobasheri et al., 2009; Richardson et al., 2007). However, since definite markers of NP cells have only recently been described (Minogue et al., 2010), a range of chondrocyte markers, with which they share a large phenotypic similarity, are routinely used (see Figure 5 and Table 1 for details of some of the currently investigated MSC markers).

Fig. 5. Positive expression of CD 90 and lack of expression of CD 34 in canine mesenchymal stem cells

8. Proliferation of research on Adult Stem Cells

Since they were first identified by Pittenger and co-workers (Pittenger et al., 1999) research on adult stem cells has proliferated at a staggering pace. Work using adult stem cells does not involve many of the ethical challenges associated with using embryonic stem cells. Another reason for the rapid expansion in this area is the availability of a range of adult tissues from humans and animals. MSCs also possess neuroprotective (Uccelli et al., 2011) and cardioregenerative (Flynn and O’Brien, 2011) properties as well as the potential for musculoskeletal regeneration (O’Sullivan et al., 2011).
<table>
<thead>
<tr>
<th>Species</th>
<th>Source</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>Adipose tissue</td>
<td>CD13, CD29, CD44, CD73 and CD90</td>
<td>CD34, CD45 and MHC-II</td>
</tr>
<tr>
<td>Canine</td>
<td>Bone marrow</td>
<td>CD90 and MHC-I</td>
<td>CD34, CD45 and MHC-II</td>
</tr>
<tr>
<td>Human</td>
<td>Bone marrow Umbilical</td>
<td>CD29, CD44, CD73, CD90, CD105, CD106 and HLA-I</td>
<td>CD14, CD34, CD45, CD133, CD144 and HLA-II</td>
</tr>
<tr>
<td></td>
<td>cord blood</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adipose tissue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equine</td>
<td>Bone marrow</td>
<td>CD90, fibronectin, perlecan and collagen type IV</td>
<td>---</td>
</tr>
<tr>
<td>Equine</td>
<td>Umbilical cord matrix</td>
<td>CD54, CD90, CD105, CD146, Oct4, SSEA-4, c-Kit, SSEA-3 and TRA-1-60</td>
<td>CD34, CD45 and CD133</td>
</tr>
<tr>
<td>Canine</td>
<td>Bone marrow</td>
<td>CD90 and CD105</td>
<td>CD34 and CD45</td>
</tr>
<tr>
<td>Equine</td>
<td>Umbilical cord blood</td>
<td>Oct4, TRA-1-60, TRA-1-81 and SSEA-1</td>
<td>---</td>
</tr>
<tr>
<td>Equine</td>
<td>Adipose tissue</td>
<td>Oct4, TRA-1-60 and TRA-1-81</td>
<td>SSEA-1 and SSEA-4</td>
</tr>
<tr>
<td>Ovine</td>
<td>Bone marrow</td>
<td>CD44, vimentin and CD105</td>
<td>CD34 and CD45</td>
</tr>
<tr>
<td>Human</td>
<td>Adipose tissue</td>
<td>CD44, CD90, CD105, CD146, CD166, CD166 and STRO-1</td>
<td>CD14, CD31 and CD45</td>
</tr>
<tr>
<td>Human</td>
<td>Bone marrow</td>
<td>CD44, CD90, CD105 and CD166</td>
<td>CD45 and CD117</td>
</tr>
<tr>
<td>Human</td>
<td>Bone marrow</td>
<td>CD29, CD44, CD73, CD90, CD105 and CD146</td>
<td>CD14, CD34 and CD45</td>
</tr>
<tr>
<td>Human</td>
<td>Infrapatellar fat pad</td>
<td>CD13, CD29, CD44, CD90, CD105 and 3G5</td>
<td>CD34 CD56, LNGFR and STRO-1</td>
</tr>
<tr>
<td>Human</td>
<td>Infrapatellar fat pad</td>
<td>CD13, CD29, CD44, CD90 and CD105</td>
<td>CD35, CD56, LNGFR and STRO-1</td>
</tr>
<tr>
<td>Human</td>
<td>Infrapatellar fat pad</td>
<td>CD13, CD29, CD44, CD90 and CD105</td>
<td>CD34, CD56, LNGFR and STRO-1</td>
</tr>
<tr>
<td>Ovine</td>
<td>Bone marrow</td>
<td>CD29, CD44 and CD166</td>
<td>CD31 and CD45</td>
</tr>
<tr>
<td>Human</td>
<td>Bone marrow</td>
<td>CD44, CD54, CD90 and STRO-1</td>
<td>CD14 and CD45</td>
</tr>
<tr>
<td>Human</td>
<td>Placental chorionic</td>
<td>CD49a/VLA-1, CD146, CD106, 3G5, α-SMA and STRO-1</td>
<td>X63 and vWF</td>
</tr>
<tr>
<td></td>
<td>villi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canine</td>
<td>Adipose tissue</td>
<td>CD29, CD44 and CD90</td>
<td>CD13, CD31, CD34, CD45, CD73, CD105 and CD117</td>
</tr>
<tr>
<td>Canine</td>
<td>Umbilical cord blood</td>
<td>CD29, CD33, CD44, CD105, CD184 and Oct4</td>
<td>CD4, CD8a, CD10, CD14, CD20, CD24, CD31, CD34, CD38, CD41a, CD41/61,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CD62p, CD73, CD90, CD133 and HLA-DR</td>
</tr>
<tr>
<td>Equine</td>
<td>Bone marrow</td>
<td>Sox-2, Oct4 and Nanog</td>
<td>CD34</td>
</tr>
<tr>
<td>Equine</td>
<td>Adipose tissue</td>
<td>CD90 and CD44</td>
<td>CD13</td>
</tr>
<tr>
<td>Canine</td>
<td>Adipose tissue</td>
<td>CD44, CD90, CD140a and CD117</td>
<td>CD34 and CD45</td>
</tr>
<tr>
<td>Canine</td>
<td>Adipose tissue</td>
<td>CD90 and CD105</td>
<td>CD34 and CD45</td>
</tr>
</tbody>
</table>

Table 1. Cell surface markers of MSCs from various species and tissue sources. Data from Penny et al., (in press)
9. Musculoskeletal tissue regeneration

Connective tissues, such as bone, cartilage, tendon, ligament and the IVD all suffer from both traumatic and age-related degenerative injuries. While bone repairs relatively well, the avascular and hypocellular nature of cartilage and in particular the IVD means these tissues suffer from a very limited self-repair capacity. During OA and IVD degeneration (one of the main causes of LBP) there is an imbalance between synthesis and degradation of the extracellular matrix which leads to an overall loss of tissue. This tissue destruction over time leads to pain and reduced mobility. While the increased repair capacity of bone prevents this, a number of metabolic and degenerative disorders, such as osteoporosis, osteonecrosis and Paget’s disease, can cause bone loss or abnormal bone turnover. Traumatic injury and loss of bone following surgery for other diseases such as cancer can also lead to bone lesions which are too large for the body’s self-regeneration capacity to cope with. Current clinical interventions for large bone defects, such as bone grafting, suffer from problems with donor site morbidity and limited material for large scale autologous grafts and infection or immune rejection with allogeneic grafts. The main histological, ECM and phenotypic markers of osteoblasts, chondrocytes and adipocytes differentiated from mesenchymal stem cells are shown in Table 2.

<table>
<thead>
<tr>
<th></th>
<th>Osteoblasts</th>
<th>Chondrocytes</th>
<th>Adipocytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histological Stains</td>
<td>Alizarin Red</td>
<td>Toluidine Blue</td>
<td>Oil Red O</td>
</tr>
<tr>
<td></td>
<td>von Kossa</td>
<td>Alcian Blue</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Safranin O</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Masson trichrome</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>stain C</td>
<td></td>
</tr>
<tr>
<td>ECM Markers</td>
<td>Type I collagen</td>
<td>Type II collagen</td>
<td>Type I collagen</td>
</tr>
<tr>
<td></td>
<td>Beta 1 integrin</td>
<td>Aggrecan</td>
<td>Beta 1 integrin</td>
</tr>
<tr>
<td>Other Markers</td>
<td>Alkaline phosphatase (ALP)</td>
<td>Sox9</td>
<td>Adiponectin</td>
</tr>
<tr>
<td></td>
<td>Osteonectin (OSTN)</td>
<td>Sox9</td>
<td>Adiponectin</td>
</tr>
<tr>
<td></td>
<td>Osteocalcin (OCN)</td>
<td>Sox9</td>
<td>Fatty Acid Binding Protein 4 (FABP4)</td>
</tr>
<tr>
<td></td>
<td>Runt-related binding factor-2 (Runx2) / Core binding factor alpha 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Osteopontin (OPN)</td>
<td>Lipoprotein Lipase (LPL)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bone Sialoprotein (BSP)</td>
<td></td>
<td>Leptin</td>
</tr>
<tr>
<td></td>
<td>Vitamin D receptor (VDR) (14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Homeobox gene MSX2 (14)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. The main histological, ECM and phenotypic markers of osteoblasts, chondrocytes and adipocytes differentiated from mesenchymal stem cells. Data from Penny et al., (in press)

These limitations in current clinical treatments for bone defects and disorders have led to the development of tissue engineering strategies using both synthetic and natural scaffold implants. Materials such as tricalcium phosphates (Guo et al., 2004a; Guo et al., 2004b; Jiang et al., 2007; Shao et al., 2006; Solchaga et al., 1999), calcium carbonates (Krekla et al., 1999), hydroxyapatite (Chajra et al., 2008; Reddi, 2000; Yoshikawa and Myoui, 2005) and Bioglass (Helen and Gough, 2008; Wilda and Gough, 2006) have all been utilised alongside growth
factors to promote new growth, or act as supports for implanted cells to regenerate new tissue. These materials all aim to mimic the specialised microenvironment or bone and cartilage and are growing in their clinical application.

Articular cartilage and the IVD share similarities in cellular phenotype and extra-cellular matrix composition. Consequently similar approaches have been adopted for tissue engineering cartilage and IVD (Kalson et al., 2008; Richardson et al., 2007). As with bone repair, there are major limitations to current clinical treatments for OA and IVD degeneration. Scaffold-free autologous chondrocyte implantation (ACI) is currently used clinically to treat small cartilage lesions, such as those caused by traumatic injury. For this treatment a biopsy is taken from a non-load bearing region of cartilage, the chondrocytes enzymatically extracted, expanded in monolayer culture, then reimplanted into the lesion and covered with a periosteal flap (Brittberg et al., 1994). The therapy has been used to treat over 12,000 patients worldwide and offers cartilage repair and reduced pain equivalent to existing surgical cartilage repair therapies (Peterson et al., 2002). However, while this treatment appears to work well for small cartilage lesions it has limited practical application for larger osteoarthritic lesions.

Cell implantation into degenerate IVDs has been demonstrated in animal models to both inhibit degeneration and regenerate tissue (Ganey et al., 2003). A small-scale study in human patients comparing standard discectomy for disc prolapse with discectomy plus autologous disc cell implantation demonstrated improvements in pain reduction, preservation of disc height and prevention of adjacent disc segment degeneration in patients who underwent the cell implantation therapy (Meisel et al., 2006; Meisel et al., 2007). Clinical follow-up data is limited and there is no biochemical or biomechanical data, but this study demonstrates the potential for cell-based therapies for IVD tissue regeneration. However, studies suggest that isolation of cells from degenerate IVD could accelerate degeneration, while isolation of cells from non-degenerate levels may induce degenerative changes and needle puncture is a common method of inducting degeneration in animal models of disease (Kim et al., 2005; Korecki et al., 2008; Masuda et al., 2006; Zhang et al., 2009). Additionally, as IVD degeneration, like OA in cartilage, affects the phenotype of resident cells the identification of a suitable cell source for novel tissue engineering and regenerative medicine strategies is one of the key determinants of its success.

Cells used in tissue engineering must survive within the graft site and produce a suitable and functional matrix, which mimics, or even improves on the original tissue. Autologous chondrocyte implantation (ACI) has been shown to be effective in the treatment of osteoarthritic cartilage lesions, producing a type II collagen and proteoglycan-rich matrix which restores function to the joint (Gillogly et al., 1998). Similarly, implantation of chondrocytes within a 3-dimensional carrier system such as a collagen gel has also been shown to produce a cartilaginous matrix, which could be of clinical use (Gavenis et al., 2006; Sakai et al., 2006).

10. Microenvironmental challenges for MSC-based tissue regeneration: The 3-D environment and oxygenation

One of the major challenges facing MSC-based tissue engineering is mimicking and recreating the microenvironment of the tissue that is being regenerated. MSCs destined for tissue engineering must be able to survive in a physiologically harsh extracellular matrix, an environment that will be highly hypoxic, acidic, and nutrient deprived. In addition, this
environment may be exposed to dynamic compressive forces or rich in pro-inflammatory mediators that could induce catabolic and apoptotic responses in MSCs. Culturing the cells in a high-density 3-D environment is a good starting point and clearly has a number of benefits. High-density culture (see Figure 6) is a 3-dimensional system that has been in the literature since the early 1970’s. High-density suspension cultures of chondrocytes were initially used to study cartilage matrix protein synthesis by mammalian chondrocytes (Kuettner et al., 1982a; Kuettner et al., 1982b), specifically mucoprotein (Nevo and Dorfman, 1972) and proteoglycan (Handley and Lowther, 1976) biosynthesis. In an important study published in 1977 the method was refined by von der Mark and von der Mark who used tissue culture plastic dishes on an agar base to monitor chondrogenesis of stage-24 chick limb mesodermal cells in vitro by analyzing the onset of type II collagen synthesis (von der Mark and von der Mark, 1977). This work demonstrated that high-density cultures may be used for the analysis of cell specific types of collagen and provide a useful model for detailing the specific events in the differentiation of mesenchymal cells in vitro. Several subsequent studies used chick limb bud mesenchymal cells and chick sternal chondrocytes cultured in high-density to study chondrogenesis and proteoglycan synthesis (Lohmander et al., 1979) and fibronectin expression (Hassell et al., 1979). We have used this culture system as a model for chondrogenic, osteogenic and tenogenic differentiation of MSCs and redifferentiation of dedifferentiated chondrocytes (Csaki et al., 2009; Csaki et al., 2007; Seifarth et al., 2009; Shakibaei et al., 2006) (see Figure 7). The high-density model exhibits a number of characteristics that make it particularly suitable for studied on chondrogenesis. In the first 24 hours of the high-density chondrocyte culture, cells form prechondrogenic areas composed of densely packed cells with intercellular interactions (gap junctions); these are surrounded by a perichondrium of flat fibroblast-like cells (Shakibaei et al., 1993) resembling the situation during the early stage of chondrogenesis in vivo. The extensive cell-cell interactions during the first step of chondrogenesis are crucial for cell aggregation (Denker et al., 1999; Loty et al., 2000). The high-density culture system allows investigations during chondrogenesis starting from early blastema/mesenchymal stem cell condensations until cartilage maturation. This chondrogenic development is accompanied by enlargement of cartilage nodules, which is not due to cell proliferation but rather is due to appositional growth, which includes the transition of perichondral cells into chondrocytes. These conclusions are based on the almost complete absence of mitotic figures in cartilage and perichondrium and on the continuous increase in nodule size during cultivation (Denker et al., 1999).

In addition to 3-D environment, the presence of member(s) of the transforming growth factor (TGF-β) family and low oxygen tension have been reported to promote the in vitro differentiation of MSCs (Ronziere et al., 2010). Appropriate levels of oxygenation can be powerful determinants of MSC differentiation. For example, low oxygen tension is a more potent promoter of chondrogenic differentiation than dynamic compression (Meyer et al., 2010). Enhanced chondrogenic differentiation of human bone marrow-derived MSCs has been observed in a low oxygen environment in micropellet cultures (Khan et al., 2010; Markway et al., 2010). Clearly oxygen tension is an important determinant of MSC differentiation; hypoxia, cell aggregation and TGF-β delivery are crucial for achieving complete chondrogenesis (Mobasher et al., 2009; Richardson et al., 2007). Although MSCs may possess a superior potential to generate a functional repair tissue in low oxygen tensions, in the context of in vitro cartilage tissue engineering, cells maintained in normoxic conditions in the presence of TGF-β generate the most mechanically functional tissue.
Physiologically low oxygen tension during monolayer expansion of MSCs has been shown to be advantageous in order to improve cartilage tissue engineering in a sheep model (Zscharnack et al., 2009). The information available in the literature leads to the conclusion that MSCs in culture function optimally in an atmosphere of reduced oxygen that more closely approximates documented \textit{in vivo} oxygen tension (Lennon et al., 2001). These observations apply to cells derived from OA patients (Khan et al., 2007). Clearly fine adjustments to these conditions in future studies could produce an engineered tissue with the desirable mechanical and biological properties.

![Fig. 6. 3-Dimensional high-density culture of mesenchymal stem cells (MSCs) and primary chondrocytes. The MSCs in this high-density model are stimulated to undergo chondrogenesis by the co-cultured primary chondrocytes](image)

One proposed method to ensure MSC survival and function following implantation into the degenerate tissue is to pre-condition, or pre-differentiate the cells. A recent study by Wuertz...
and co-workers (Wuertz et al., 2008) demonstrated that when cultured in an intervertebral disc-like environment containing low glucose, low pH and high osmolarity, MSCs demonstrated a lower proliferation rate and lower expression of matrix genes compared to standard conditions, highlighting the importance of the microenvironmental niche on MSC biology. In particular, low pH has been shown to inhibit expression of aggrecan by MSCs (Wuertz et al., 2009a), while the presence of catabolic cytokines IL-1β and TNF-α, which are increased in both disc degeneration and OA, inhibited chondrogenesis of MSCs (Wehling et al., 2009).

11. High density cultures of MSCs: “3Rs” models for engineering biomimetic models of articular cartilage

A number of animal models of arthritis have been developed to study arthritic disease pathogenesis and evaluate the efficacy of candidate anti-inflammatory and anti-arthritis drugs for clinical development (Aigner et al., 2010; Ameye and Young, 2006; Brandt, 1991, 1994; Goldring, 1999; Koch and Betts, 2007; van den Berg, 2001). These animal models may involve injection of inflammatory agents into the joint, surgical creation of joint instability or surgical replication of joint trauma. Such models not only cause a considerable amount of pain and suffering but also none of them have a proven track record of predictability in human disease. Consequently, there is an acute need for developing novel and alternative in vitro models that mimic the biology of cartilage (Freed et al., 2006; Oreffo and Triffitt, 1999; Reddi, 1998, 2000; Sittinger et al., 2004). Many studies have used articular cartilage and synovial tissues to establish in vitro models of the joint. In our laboratories we have developed explant models of articular cartilage inflammation, co-cultures of primary synoviocytes and chondrocytes as well as 3-dimensional high-density cultures of chondrocytes and MSCs (Buhrmann et al., 2010; Csaki et al., 2009; Csaki et al., 2007; Mobasheri et al., 2009; Richardson et al., 2010). We have also determined the potential of phytochemicals as stimulators of chondrogenic differentiation. These culture models of MSCs, fully differentiated cells and co-cultures have potential of as “proof of principle” ethically acceptable “3Rs” models for engineering biomimetic models of articular cartilage in vitro for the purpose of replacing and reducing the use of animals in arthritis research. This approach could help reduce the number of laboratory animals used in arthritis research and may provide a realistic alternative to experimental animals.

12. Conclusions

One of the major conceptual difficulties in designing or applying clinically based MSC therapies to cartilage and intervertebral disc degeneration is the complexity and heterogeneity of disease among patients. New information obtained from in vitro studies and animal models are useful. However, the information gained from some animal models cannot be interpolated directly for translational studies in human patients with cartilage or disc degeneration. For example, stem cell therapy may not be applied across the entire spectrum of cartilage and intervertebral disc degeneration; the therapy may well work in cases that involve very early morphological and degenerative changes but success may not be guaranteed in cases where the damage and degeneration is extensive. It is difficult to conceive how MSCs and tissue engineering may be clinically useful in extreme cases where the cartilage has completely worn away or the disc has collapsed completely. Therefore, the
variability among the human patient population complicates the concept of stem cell based therapy and introduces a very large element of risk, which may inhibit or impede the translational potential of regenerative medicine using MSCs.

Several clinical trials have already begun to evaluate the use and efficacy of mesenchymal stem cells and biomaterials in arthritic diseases of joints and the spine. At the present time too many gaps remain, both clinically and scientifically, before such approaches can be used safely and rationally. Interest in tissue engineering of cartilage and intervertebral disc is increasing and cartilage tissue engineering has been investigated for over 20 years. However, none of the approaches available for cartilage for example have been able to achieve the consistency, effectiveness and reliability required for clinical applications. Tissue engineering of a mechanically resilient disc that meets the structural and functional criteria for effective functional integration into a defect site in the host is a difficult endeavour. One of the fundamental weaknesses of all the tissue engineered models available to date is that none of them possess the normal zonal organization of cells that is seen in vivo (i.e. annulus fibrosus and nucleus pulposus regions) and the local composition of extracellular matrix in each zone. This structural organisation is a pre-requisite for normal disc function and the success of any future clinical applications.

For the foreseeable future the molecular determinants of MSC differentiation into chondrogenic and osteogenic lineages continue to be elucidated using existing 2D models. However, new research using 3D models is more likely to shed light on fundamental processes such as paracrine-mediated differentiation, and mechanisms responsible for the recruitment of endogenous progenitor populations in response to chemical, biological, and physical cues. Furthermore, three-dimensional and high-density culture models have huge potential as “3Rs” models for replacing and reducing the use of animals in arthritis research. There are numerous animal models for OA and other types of arthritis. However, none of them have a proven track record of predictability for the equivalent disease in humans and the majority of them are plagued with problems. Three-dimensional culture conditions, hypoxia and the use of specially supplemented culture media will ultimately need to be assessed in pre-clinical animal models that closely mimic the human disease. However, 3D culture models utilizing tissue engineered articular cartilage and IVD should help us carry out better and more focused research as well as reducing the number and variety of experimental animals used before moving onto larger and more expensive pre-clinical animal models.

Bone marrow and adipose tissue derived MSCs possess the potential for chondrogenic, osteogenic and tenogenic differentiation in the presence of appropriate cellular stimuli. Stable induction can be achieved with a combination of endocrine and environmental factors (i.e. co-culture of MSCs and primary cells), or through culturing MSCs with spent media from primary chondrocyte, osteoblast or tendon cell cultures. Therefore, these results point to new ways in which MSCs might be manipulated in culture for future therapeutic strategies for cartilage, bone and tendon tissue engineering.

Regenerative medicine relies on the optimistic view that stem cells, allogeneic tissue transplantation, patient derived adult stem cells and biomaterials may be used for repairing and regenerating tissues and organs in the future. Although we should maintain this optimistic view, it would be prudent to consider the numerous hurdles and complicating factors that need to be overcome as research progresses in this exciting and rapidly expanding field.
13. Acknowledgments

The authors thank their collaborators Professor Anthony J. Freemont (University of Manchester) and Professor Pablo Martin-Vasallo (University of La Laguna, Tenerife). This study was made possible by grants from The Wellcome Trust, the National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs) (grant number: Mobasheri.A.28102007), the Biotechnology and Biological Sciences Research Council (BBSRC) (grants BBSRC/S/M/2006/13141 and BB/G018030/1) and the Engineering and Physical Sciences Research Council (EPSRC), UK. We would like to thank the members of our laboratories for their support and collaboration.

14. References

1. Introduction

1.1 The definition of MSCs

Bone marrow (BM) was the first tissue described as a source of plastic-adherent, fibroblast-like cells that develops colony-forming unit fibroblastic (CFU-F) when seeded in tissue culture plates (Friedenstein et al., 1982; 1987). These cells, originally designated stromal cells, elicited much attention, and the main goal of thousands of studies conducted using these cells was to find an ultimate pure cell population that could be further utilized for regenerative purposes. In these studies, cells were isolated using several methods and were given names such as mesenchymal stem cells (MSCs), mesenchymal progenitors, stromal stem cells, among others. Lately, a committee of the International Society for Cytotherapy suggested the name “multipotent mesenchymal stromal cells” (Dominici et al., 2006). However, most scientists have been referring to them simply as “MSCs”.

The precise definition of these cells remains a matter of debate. Nevertheless, to date MSCs are widely defined as a plastic-adherent cell population that, under closely controlled conditions, can be directed to differentiate in vitro into cells of osteogenic, chondrogenic, adipogenic, myogenic, tenogenic, or hematopoietic-supportive stromal lineages (Pittenger et al., 1999; Javazon et al., 2004; Alonso et al., 2008; Prockop, 2009) (Fig. 1).

As part of their stem cell nature, MSCs proliferate and give rise to daughter cells that have the same pattern of gene expression and phenotype and, therefore, maintain the “stemness”
of the original cells. Self-renewal and differentiation potential are two criteria that define MSCs as real stem cells; however, these characteristics have only been proved after in vitro manipulation, in bulk and at single-cell level, and there is no clear description of the characteristics displayed by unmanipulated MSCs in vivo (Lee et al., 2010).

Fig. 1. Source of MSCs and multipotent differentiation capacity. MSCs can be isolated from bone marrow, deciduous teeth, fat, hair follicles, peripheral blood, periodontal ligament, trabecular bone, scalp subcutaneous tissue, and skeletal muscle in adult tissues, and from bone marrow, liver, lung, placenta, spleen and umbilical cord in fetal tissues. MSCs can generate multiple mesoderm-type cell lineages, such as osteocytes, chondrocytes, adipocytes, myocytes, tenocytes, and stromal cells.

In contrast to other stem cells such as hematopoietic stem cells (HCSs), which are identified by the expression of the CD34 surface marker, MSCs lack a unique marker. The CD105 surface antigen (endoglin) has been recently used to isolate human MSCs (hMSCs) from BM and such an approach enabled the characterization of freshly isolated hMSCs before culture. A distinct expression of certain surface antigens such as CD31 and CD45 was demonstrated in freshly isolated hMSCs and the expression of these molecules was lower in culture-expanded hMSCs (Aslan et al., 2006). These data suggest, again, the alterations that hMSCs may undergo during culture (Boquest et al., 2005).

In several studies, cultured MSCs have been characterized either by using cell surface antigens and/or by examining the cells’ differentiation potential. Lately, the Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy proposed minimal criteria to define human MSCs: (1) MSCs must be plastic-adherent when maintained in standard culture conditions and form CFU-Fs in primary cultures, (2) MSCs must express CD73, CD90, CD105, and lack expression of CD11b, CD14, CD19, CD34, CD45,
CD79alpha, and HLA-DR surface molecules, and (3) MSCs must differentiate to osteoblasts, adipocytes, and chondroblasts in vitro (Dominici et al., 2006; Claros et al., 2008).

1.2 The stem cell nature of MSCs
Stem cells are defined by their ability to self-renew and by their potential to undergo differentiation into functional cells under the right conditions. The ongoing public discussion regarding whether MSCs are strictly stem cells requires a revision of the definition of stem cells, as MSCs apply to a wide cluster of non-hematopoietic stem-like cells isolated from mesenchymal tissues such as BM, adipose, amniotic fluid, and blood vessels. The central question would be whether they might be differentiated into cells of other than a mesenchymal nature. Researchers have reported that MSCs from BM and other tissues can be differentiated into epithelial, endothelial, and neural cells (Spees et al., 2003; Greco & Rameshwar, 2007; Yue et al., 2008). As stated above, there is a consensus on specific MSC markers, but a unique marker of “stemness” and multipotentiality has not yet been defined, since culture-expanded MSCs may lose some of these markers and acquire others, which are non-specific, but cells retain their multipotentiality (Jones & McGonable, 2008). The molecular signature and in vivo distribution status of MSCs remain unknown and, as such, subject to investigation, even though ex vivo-expanded MSCs have been widely used in numerous studies (Prockop, 2007; Kubo et al., 2009; Pricola et al., 2009).

In local models, direct injection of hMSCs into the brain tissue of rats resulted in the cells’ long-term engraftment and subsequent migration along pathways similar to those used by neural stem cells (Azizi et al., 1998). The results of these studies demonstrate the multilineage differentiation potential of BM-derived adult MSCs and aid in defining them as suitable candidates for the regeneration of several mesenchymal tissues. These data suggest that stem cells require a specific tissue environment to develop their intrinsic potency (Weissman, 2000). A stem cell niche is defined as a complex, multifactorial local microenvironment required for the maintenance of the stem cell biology. The stem cell niche consists of stem cells, non-stem cells, an extracellular matrix (ECM) and molecular signals. Inside the niche, the stem cell can divide asymmetrically giving rise to both new stem cells and proliferating progenitor cells. These proliferating cells give rise to a cell population that undergoes differentiation (Becerra et al., 2011). Recent scientific advances have lead to a substantial increase in the amount of information regarding stem cell niche data. Some of the best-characterized stem cell niche models are Drosophila germarium or testis, vertebrate hair follicle, intestinal crypts, BM, and brain subventricular/subgranular zones (Fuchs et al., 2004; Mitsiadis et al., 2007). In vitro culture conditions of single stem cells form intestinal crypts can give rise to organoids which may behave as self-organizing structures in the absence of other non-epithelial cellular niche components (Sato et al., 2009).

1.3 MSCs and tissue engineering
The chronic shortage of donor organs and tissues for donor organs and tissues for transplantation has provided the impetus for intense research in the field of tissue engineering (TE). Unlike pharmacology and physiotherapies they are mainly palliative, TE and cellular therapy seek to augment, replace, or reconstruct damage of diseased tissues (Chai & Leong, 2007). Tissue engineering is an emerging field that offers outstanding opportunities for regenerative medicine. The most common concept underlying TE is to combine a scaffold or matrix, living cells and/or biologically active molecules to form a “TE
construct” to promote the repair and regeneration of tissues. The scaffold supports cell colonization, migration, growth and differentiation, and often guides the development of the required tissue or acts as a drug delivering vehicle. Hence, TE can be defined as a discipline that seeks to create or to induce the formation of a specific tissue in a specific location through the selection and manipulation of cells, scaffolds, biologic stimuli (Muschler & Midura, 2002), and vascular support (angiogenesis and/or vasculogenesis), on which the TE paradigm is based on (Fig. 2).

![Diagram showing the principles underlying tissue engineering](image)

Fig. 2. Graphical illustrations showing the principles underlying tissue engineering. *From the same authors, published by Cellular and Molecular Biology, vol. 54 (1), 40-51. Copyright 2008 C.M.B. Edition*

The right knowledge of these interactions will create exciting new opportunities that might be useful in a broad array of clinical applications. As a logic consequence, today, a great number of multi-disciplinary groups with different backgrounds (Fig. 3) focus on various problems associated with TE, including cell isolation, characterization, and manipulation of cell proliferation/differentiation for stem cell therapy, design and elaboration of appropriate biomaterials as well as for development of bioreactors to enlarge tissue/organ engineering as a strategy to be applied in regenerative medicine.

MSCs have recently received much attention for their therapeutic potential in regenerative medicine, due to their capacity to secrete soluble factors that have beneficial effects (Caplan & Dennis, 2006; Cuenca-López et al., 2008; Caplan, 2009). Several studies have demonstrated that these MSC trophic factors may enhance regeneration ability of injured tissues, inhibit apoptosis, limit pathologic fibrotic remodelling, stimulate proliferation and differentiation of endogenous stem-like progenitors, decrease inflammatory oxidative stress and modulate immune reactions (Meirelles et al., 2009; Lee, 2010; Rodrigues et al., 2010).
Moreover, it has been described that growth factors (GFs) can act by an autocrine, paracrine, endocrine, juxtacrine, ECM mediated or intracrine process (Fig. 4) (Nimni, 1997). Autocrine action is the secretion of GFs for which the cell possesses receptors (1). Some experiments have suggested that this interaction may even occur within the cell, a process called intracrine interaction (6). Paracrine action is defined as the release of soluble GFs which diffuse into the extracellular space and act upon adjacent or closely located cells (2). In the case of endocrine action, GFs are carried in the bloodstream and may act on distant sites much like a hormone (3). Juxtacrine stimulation is when one cell has surface bound GFs which interact with an adjacent cell containing receptors for the GF (4). Furthermore, some ECM molecules can bind GFs, modulating their activities and regulating how they interact with cells (5).

Protein chain reaction, flow cytometry, enzyme-linked immunosorbent assay and Western blotting have shown that the secretion of MSCs include many major GF families and multitude of chemokine, including transforming growth factor beta-1 (TGF-β1), fibroblast growth factor (FGF), hepatocyte growth factor (HGF), insulin-like growth factor (IGF), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), nerve growth factor beta (NGF-β), Wnts, interleukin-1 (IL-1), IL-1β, IL-3, IL-6, IL-7, IL-11, among others (Gnecchi et al., 2008; Caplan, 2009; Zisa et al., 2009).

TGF-β1 is a multifunctional GF with a broad range of biological activities in various cell types in many different tissues. In general, TGF-β1 is known to influence cells from the chondro- and osteogenic lineage, promoting initial stages of mesenchymal condensation, regulating cell proliferation and cell differentiation, and stimulating production of ECM.
(Andrades et al., 2003; van der Kraan et al., 2009; Janssens et al., 2005). Other of the trophic benefits produced by TGF-β1 is the immunomodulatory effect. Several authors have reported that MSCs suppress natural killer (NK) cell proliferation, alloreactive T-lymphocyte proliferation and activation, cytokine production, and cytotoxicity against HLA-class I expressing targets via TGF-β1 and prostaglandin E2 secretion (Groh et al., 2005; Sotiropoulou et al., 2006).

Fig. 4. Chemical signaling mechanisms of growth factors. GFs (triangles) produced by the cells can act within itself or in adjacent or remote cells to modulate their activities by reacting with specific receptors. (1) Autocrine; (2) paracrine; (3) endocrine; (4) juxtacrine; (5) extracellular matrix mediated; (6) intracrine. Modified from Nimni ME. Polypeptide growth factors: targeted delivery systems. Biomaterials. 1997; 18(18):1201-1225

FGFs are a family of GFs that act in an autocrine and paracrine way as a mitogen on many cell types (Chiou et al., 2006; Makino et al., 2010). They also regulate events in normal embryonic development, angiogenesis, wound repair, and cell differentiation. FGFs are involved in endothelial cell proliferation and the physical organization of endothelial cells into tube-like structures. They thus promote angiogenesis, the growth of new blood vessels from the pre-existing vasculature (Cao et al., 2003; Behr et al., 2010). Moreover, FGFs are important players in wound repair, stimulating the proliferation of fibroblasts that give rise to granulation tissue, which fills up a wound cavity early in the wound healing process (Schmid et al., 2009). Respect to cell differentiation, it is known that FGFs not only maintain MSC proliferation, they also retain osteogenic, adipogenic and chondrogenic differentiation potentials throughout many mitotic divisions (Tsutsumi et al., 2001; Kawazoe et al., 2008; Rodrigues et al., 2010).

The anti-fibrotic effects of MSCs have been demonstrated in different animal models, but the molecular mechanisms are not yet fully understood. Recently, HGF has been shown to be involved in the prevention of fibrosis (Li et al., 2009). The results reveal that, in a situation of tissue injury, MSCs become proliferative and secrete HGF, which in turn mediates anti-
fibrotic and immunomodulatory effects. Additionally, the secretion of HGF and IGF-I is essential for activation of cardiac stem cells, which may contribute to endogenous repair mechanisms (Linke et al., 2005). On the other hand, IGFs play an important role in stem cell maintenance within the niche (Bendall et al., 2007), and bone metabolism. During osteogenesis, bone cells secrete amounts of IGFs that are stored at the highest concentration of all GFs in the bone matrix (Wang et al., 2011). Principally, IGFs have an anti-apoptotic effect on (pre)osteoblast and enhance bone matrix synthesis (Meinel et al., 2003; Niu & Rosen, 2005). PDGF is considered one of the key regulators of general tissue repair. The main functions of PDGF are to stimulate cell replication of healing capable stem cells, as well as proliferation of endothelial cells. This will cause budding of new capillaries into the wound (angiogenesis), a fundamental part of all wound healing. In addition, PDGF also seems to promote the migration of perivascular healing capable cells into a wound and to modulate the effects of other GFs (Hollinger et al., 2008).

VEGF is best known for inducing angiogenesis (Gerstenfeld et al., 2003). Further, VEGF induce vascular changes: increased vascular support network and permeabilization of capillaries (Neufeld et al., 1999; Hansen-Algenstaedt et al., 2006), which could be responsible for the stimulation of the recruitment ofMSCs (Fiedler et al., 2005). In addition, VEGF secretion is also increased during MSC osteogenesis (Wang et al., 2010), thus accounting for the infiltration of blood vessels during bone development (Shum et al., 2003). While VEGF has been reported to decrease the synthesis of osteocalcin (a marker of osteoblast maturation) in osteogenic MSCs (Villars et al., 2000), it has also been observed to increase mineralization (Mayer et al., 2005) and to be regulated by proteins involved in osteoblast differentiation (Deckers et al., 2000), suggesting that it usually acts as and enhancer of both angiogenesis and osteogenesis.

The neuroprotective effects of MSCs are principally attributed to production of neurotrophic factors, such as BDNF and NGF-β, that support neuronal cell survival, induce endogenous cell proliferation and promote nerve fiber regeneration at sites of injury (Li et al., 2002; Mahmood et al., 2004; Alexanian et al., 2010). Additionally, MSCs also express various neuro-regulatory proteins, adhesion molecules and receptors that likely contribute to the MSC-induced effects on neuronal cell survival and neurite formation (Crigler et al., 2006). Another family of proteins critical in MSC biology is the Wnt family of signalling molecules (Ling et al., 2009). Wnts are highly conserved proteins that are essential to limb development and musculoskeletal morphogenesis in vertebrates (Yang, 2003). At least Wnts 2, 4, 5a, 11 and 16 are expressed by MSCs along with several Wnt receptors (Frizzleds 2-6) (Etheridge et al., 2004). Wnts are very active in determining MSC patterns of proliferation and differentiation (Boland et al., 2004; Baksh & Tuan, 2007), and they also play a role in cell adhesion and migration through their indirect interactions with the cadherin pathway. Therefore, MSCs themselves secrete a large number of regulatory proteins. In vivo, these signals work together to regulate the regenerative abilities of MSCs. By learning more about the mechanisms of action and interactions of each member of this microenvironment, it will be possible to develop the full potential of MSCs for future therapeutic applications.

2. Skeletal tissue regeneration by MSCs

2.1 Therapy for bone fractures and arthrodesis

The treatment aim of bone fractures and of many orthopaedic deformities is the fusion between two or more bone ends or bone structures. Therapy for diaphyseal, metaphyseal or
paraarticular fractures of long or short bones, either simple or complex, is always addressed to achieve permanent solid bone continuity between fractured bone fragments. The same comes true for orthopaedic corrections such as bone osteotomies, scoliosis or whatever situation where a bone discontinuity, either traumatic or therapeutic mediated, exists (Guerado, 2005; Guerado et al., 2005). Nowadays surgical treatment of these conditions is the choice for both young and old patients, as conservative treatment requires prolonged neighbor joints rest which results in articular stiffness and unacceptable deformities. Further, in many instances, non-surgical treatment will be unsuccessful in dealing with many low or high energy fractures, and also with orthopaedic corrections as non-union or malunion will occur.

Current surgical treatment of fractures or orthopaedic deformities aimed to promote osteogenesis for bony fusion is still far away from being undoubtedly successful. Surgical site infection, implant failure, and many other complications will facilitate failure of achieving the main aim of surgical treatment. In many instances, even carrying out appropriately surgical technique, failure of what had been planned will be the final result. Although many techniques have been developed for non union treatment, complexity of them is, as far as biomechanics and biology are concerned, very difficult for accomplishing a successful outcome (Guerado, 2005; Guerado et al., 2005). Nonetheless, diaphyseal non-unions and even paraarticular ones, although in some cases present difficult challenges to bony union, can be managed, at least, under favorable biomechanical situations; further, its biology can be managed with autograft. Conversely, since in spinal fusion the size of any vertebra and the distance to each other make the biomechanical and biological situation very difficult for addressing a successful treatment of fusion or non-union, current and forthcoming new “biological” therapies have important perspectives. In relation to bone therapy, spinal fusion is currently the most significant surgical technique expecting for progress in biological treatments. Surgical technique of spinal arthrodesis combines a hardware system for mechanical stabilization and a biological substance for bone formation enhancement. Both surgical steps have the aim of creating an optimal biomechanical situation together with a biological environment which promotes definite spinal bony fusion (Guerado, 2005; Guerado et al., 2005).

2.1.1 Biomechanics

Biomechanics is indeed a very important issue in spinal surgery. As a general concept, spinal arthrodesis is just the treatment of multiple foci of fractures once neat decortication of host bone has been carried-out; consequently, correct application of any of the four main principles of osteosynthesis (compression, neutralization, buttressing, and tension band, together with accessory bridging) play a major role depending on the sort and position of graft used; further, not only biology but also biomechanical features of host and donor bones are decisive. Using the same graft, either cortical or cancellous, different placements may need different nature of osteosynthesis, and may make the own graft behaves in different ways. Therefore, only when correct stabilization has been performed, as in any fracture treatment, biology behaves in the wished way. Likewise provided biomechanics is correct, the same graft behaves in different ways depending on the biomechanical forces acting on it (Guerado et al., 2005). So far, there has been a long list of bone graft substitutes, and strategies for bone promotion (Hecht et al., 1999; Bostrom & Seigerman, 2005; Huang et al., 2006; Ma et al., 2007; Thalgott et al., 2009). However only cells synthesize osteoid, and
none of the nowadays known bone substitutes, apart from cells transplantation, are real “bone substitutes”, since they do not have osteoprogenitor cells.

2.1.2 Biology
Grafting enhances bone fusion, and that results in permanent stability. Otherwise hardware fails with time. The three main properties a therapy for optimum fusion enhancement must have are osteogenesis, osteoconduction, and osteoinduction, together with avoidance of histoincompatibility, and, in the clinical setting, as said above, a favorable biomechanical situation (Boatright & Boden, 2002). Osteogenesis consists basically on cells differentiation into osteogenic lineage, being bone cells the only agent with osteogenetic power. Osteoinduction is also very important; as mentioned before, molecules commonly called GFs induce MSCs to amplification (increase of cell population in number) and subsequently to differentiation into osteoprogenitor cells, specially the TGFs superfamily which also includes the well-known BMPs (Li et al., 2002). Osteoconduction is also the complement to osteogenesis and osteoinduction; a tridimensional scaffold structure of bone or bone substitute is an indispensable scaffolding for cell population growth. An osteoconductive microstructure of 200-400 microns is nowadays very easy to be manufactured. However osteoinductive GFs doses to be added to it are unknown; further osteogenetic properties of “bone substitutes” are lacking for osteoconductive materials, as osteogenesis is an exclusive property of mature osteoprogenitor cells. Since bone synthesis is exclusively made by bone cells, a large population of osteoprogenitor cells is necessary for successful fracture or spinal fusion. The larger the area to be fused the more number of osteoprogenitor cells are needed. Because MSCs population is very scarce in elderly people, this age group has a higher risk for non-union (Caplan, 1991). Nowadays it is known that differentiated cells do not reproduce themselves, being undifferentiated cells, particularly MSCs, responsible for cell amplification and subsequent differentiation into osteogenic lineage; moreover mature osteoblasts can recapitulate back to former less differentiated osteoblasts (McCulloch & Till, 2005; Daley & Scadden, 2008; Jones & Wagers, 2008; Kuang & Rudnicki, 2008; Morrison & Sprading, 2008). During the entire process, the new-forming blood vessels that grow inside the callus act as a source of new MSCs; in fact, recent publications have given strong evidences of a perivascular origin for the MSCs (Crisan et al., 2008; Da Silva Meirelles et al., 2008; Koob et al., 2010); therefore neat decortication of host bone until bleeding, becomes of overwhelming importance. On the other hand fracture focus stability prevents new vessels and incipient callus from breakage. Currently, the combination of biomechanical stabilization ensuring appropriate environment for bone growth, osteoprogenitor bone cells for osteoid synthesis, vascularization of fusion site for cells and metabolite transport, signaling molecules (TGFs, particularly BMPs) to encourage cells to amplification and differentiation, and scaffold for tridimensional cells growth has been denominated the “diamond concept” (Giannoudis et al., 2007; 2008), as to the ideal situation for fusion to take place. Hence clinical situations lacking of any of these variables are in less than optimal condition for successful spinal fusion. This concept is indeed extended to any fracture of the skeleton or joint arthrodesis (Giannoudis et al., 2007; 2008). MSCs are, therefore, the centre of the osteogenesis concept, as to its amplification and commitment to osteoprogenitor line signifies that biomechanics is already achieved into its optimum, and that the appropriate environment has been created. Finding a natural source of viable MSCs for therapy is the star point of the diamond concept.
2.1.3 Autograft as a source of osteoprogenitor cells. The relation between biomechanics and biology in spinal surgery

Autograft is the standard biological agent to be added in fracture or arthrodesis focus for bone repair enhancement (Figs. 5-8). Autograft is the appropriate biological source of cells whenever bone healing is required in any part of the skeleton, as its biological properties are considered to be optimum: autograft has a good volume effect, and also potent osteogenic, osteoinductive, and osteoconductive properties (Boatright & Boden, 2002; Niu et al., 2009). Autograft is also the standard for spinal arthrodesis as the natural source of osteoprogenitor cells (Fig. 6). It can be used in spinal surgery either as cancellous chips or as a tricortical alive implant in order to improve the immediate strength of the construct. So far, no allogenic or synthetic bone substitutes have achieved its osteogenicity, although careful autograft implantation for spinal surgery must include shortening harvesting-to-implant interim, because these properties diminish with time (Sandhu et al., 1999).

Nevertheless, morbidity in donor site after autograft collection is very high, and fractures of iliac bone, particularly after tricortical graft has been harvested, with ensuing non-union are not rare, making the need for new bone substitutes (Arrington et al., 1999; Banwart et al., 1995; Delawi et al., 2010; Epstein, 2008; Glassman et al., 2010; Slosar et al., 2007). Limited availability together with longer operative time are also the most important burdens in conventional autograft harvesting, and new less invasive aspiration techniques of cancellous bone from femoral and tibial metaphysis by a “Reamer Irrigator Aspirator” (RIA) apparently provide larger graft amounts than conventional iliac crest harvesting (Belthur et al., 2008; Kobbe et al., 2008a; 2008b) and with higher concentration of GFs (Porter et al., 2008; Schmidmaier et al., 2006); further, RIA would provoke less postoperative pain and shorter length of stay (Belthur et al., 2008). However studies on RIA for spinal surgery are lacking.

Fig. 5. Cervical spine. C6-C7 interbody disc has been removed for interbody fusion by a tricortical autograft harvested from iliac crest

This basic knowledge on autograft has been achieved after animal experiments, making clinical inference to human very uncertain. Cancellous bone graft has greater cellular activity than cortical, whereas cortical graft is much more dense and stronger (Day et al., 2000). Spongy structure of cancellous bone allows osteoprogenitor cells to have better...
vascularization, developing superior osteoconduction and osteogenesis. Anyhow although histological incorporation with prompt vascularization and MSCs invasion stars at the second day of implantation, mechanical properties of cancellous bone are compromised during remodelation phase, taking a few months to become structurally stronger (Pape et al., 2010). Cortical autograft having less biological properties than cancellous bone also suffers biomechanical weakening up to the 75% (19) at 6 to 24 weeks postimplantation, returning to normal strength some 48 weeks thereafter (Enneking et al., 1975).

Fig. 6. Harvested tricortical autograft is prepared for implantation. Cortical layers provide strength for interbody compression. Cancellous bone provides biological support for osteogenesis enhancement and faster fusion

Fig. 7. Tricortical graft in place
Consequently, according to biological and biomechanical properties of autograft, spinal posterior arthrodesis is better enhanced by cancellous autograft whereas tricortical bone under interbody compression is more suitable for buttressing in anterior interbody fusion, together with a posterior transpedicular screw system in order to provide a tension band principle; alternatively an interbody plating together with the interbody tricortical autograft provides buttressing leaving the tricortical graft healing without supporting compression; this last possibility may be used in any anterior surgical approach (Figs. 5-8); however in clinical setting it is usually preferred, by some surgeons, a 360° fusion, as surgeons feel more confident in case of implant failure. Eventually, during the course of thoracotomy, removed ribs for anterolateral thoracic or thoracolumbar approaches can substitute the use of tricortical grafts, suppressing the morbidity provoked by iliac crest graft harvesting. In this case the graft can provide limited buttressing, as ribs are not as strong as tricortical iliac crest grafts; full buttressing and neutralization must be supported by the hardware; anterior interbody plating for this purpose appears to be ideal, and ultimately posterior pedicular instrumentation either alone or, ideally, within a 360° fusion concept. In conclusion, failure in the correct combination of graft type with proper instrumentation principles will result in poorer outcome, although the right graft had been used or the appropriate osteosynthesis applied.

2.1.4 Therapy with laboratory treated MSCs
Many studies have been made during the last years in experimental MSCs application for therapy in animals. Nevertheless biomechanics and biology of animal used are quite different from humans (Heineck et al., 2010); moreover clinical situations are different from one patient to another. Stem cells are currently being studied for use in numerous clinical applications, ranging from neurodegenerative diseases to cardiac insufficiency. The use of MSCs in spinal surgery is also compelling, especially with the increasing age of the general
population. In spinal surgery, the use of MSCs is focused in intervertebral disc repair and regeneration and in spinal arthrodesis procedures. Although the routine use of cellular therapies by spine surgeons to improve outcome after a variety of surgical procedures is rapidly approaching with uncontrolled enthusiasm (Helm & Gazit, 2005), knowledge on its real effectiveness is far from being identified.

Experimental studies on the effect of low intensity pulsed ultrasound on rabbit posterolateral intertransverse processes spinal fusion with MSC-derived osteogenic cells and bioceramic composite have shown that this combination promote clinical fusion. The mechanism was likely to be mediated through better osteointegration between the host bone and implanted materials and enhanced endochondral ossification at the fusion site (Hui et al., 2011). However it is known that osteogenesis in spinal rabbit is achieved just by stripping the periostium. Also MSCs that had been cultured with osteogenic differentiation medium may induce the formation of new bone in experimental posterolateral intertransverse process spinal fusion in rabbits. Nonetheless suitability level of osteogenic differentiation of MSCs as well as the most appropriate carrier for MSCs is unknown (Nakajima et al., 2007).

New approaches and carrier have been introduced in the armamentarium for MSCs transplantation. It has been shown that MSCs and platelet lysate seeded in a fibrin or collagen scaffold can improve the new bone formation around an uncemented hip prosthesis stem in a sheep model. In vitro expanded MSCs suspended in platelet lysate and either mixed with collagen or fibrin gel as delivery vehicle inserted inside the femoral canal, in a press-fit femoral stem model provides higher bone-prosthesis contact (Dozza et al., 2011). But again biology is subjected to biomechanics and human and animal hip biomechanics are not similar.

MSCs transplantation will be a very important therapeutic principle, however deep knowledge not only on cells in cultures but also in biomechanical situations resembling clinical setting is needed. We know now that MSCs behave in different ways depending on the biomechanical situation. In fact this principle is worldwide known since more than 100 years by any orthopaedic surgeon as Wolf’s law (Wolf, 2010).

2.2 Cartilage regeneration

Degenerative disease of articular cartilage (AC), generically known as osteoarthritis (OA), is an irreversible evolution process towards terminal articular failure. Due to its high prevalence on population and its socioeconomic impact, this condition is of great concern, and this way more resources and effort are dedicated to the research on its development. OA is the result of several mechanical changes and biological events that destabilize the balance between normal degradation and synthesis of AC, ECM and subchondral bone.

Knowledge on OA physiopathology has improved considerably, evolving from a purely mechanic approach to a molecular and inflammatory view, taking into consideration that cartilage, synovium and subchondral bone contribute to the joint restructuring. Mature AC is a tissue free of blood vessels and nerves, located at the diarthrodial joints of the skeleton, making easier its gliding and the lubrication between the articular surfaces; it absorbs traumatisms and distributes load on the adjacent bone. It is made up of one ECM with proteoglycan, rich in type II collagen, and about only 5% of the tissue volume occupied by cells. These cells, the chondrocytes, are spherical, and can be found embedded inside lacunae filled with pericellular matrix and have no contact with the distant neighbour cells. Although human cartilage can reach up to 7-8 mm thickness, its supply with nutrients and oxygen is limited by diffusion, which is, however, facilitated by a cyclic compressive
loading; this provides a pumping mechanism during joint movements. There are several reasons that contribute to a lessened capacity of response from chondrocytes before an injury regarding other parenchymal cells. As it has no vascularisation, the typical provisional matrices made from fibrin deposits do not exist, nor the inflammatory cells efflux occurs, there is no delivery to the environment of cell mediators through degranulation, whereas in other tissues, arrival to the focus of such mediators with mitogenic, fibrogenic and phagocytosis-inducing capacities are responsible for the repair. Although most of the actions promoted by the mediators of inflammation can enhance the injury magnitude (such as the proteolytic capacity, free radicals production, cell death or proliferation), the best guarantee for the *restitutio ad integrum* is its early delivery at the injured focus.

Chondrocytes are well differentiated cells with a limited proliferative and migratory capacity. Before physiological stimuli, it synthesizes its own ECM at a very constant and slow rate. A macroscopic structural injury involves higher demand of matrix synthesis, resulting in an insufficient cell response to achieve the tissue regeneration. However, the regenerative capacity of the organs lies on the persistence of cell progenitors in some areas of the adult tissues. Mesenchymal non-differentiated cells found in the AC prove that cartilage, as other tissues, has the capacity to regenerate its own structure. This suggests the existence of a lapse of time in which the capacity or repair is complete; this period would possibly cover the early stages of the disease when defects are microscopic. The most adequate resolution of a chondral defect should involve the regeneration into a tissue identical to hyaline cartilage. A simple repair means the filling with a non-identical tissue, which should be able to seal the defective area with good adhesiveness to subchondral bone and total integration within the surrounding cartilage, as well as to resist the mechanic wear and incorporate into the natural turnover of the normal tissue.

All this makes the AC a tissue with almost no healing capacity for intrinsic healing in most *in vivo* situations, although tissue culture demonstrates that *in vitro* conditions may reactivate a significant regenerative potential for juvenile tissue and articular chondrocytes. In partial cartilage defects, the subchondral plate remains intact, without access to the vascular system and they are not usually repaired spontaneously. On the other hand, defects that penetrate the full chondral thickness are generally associated to the violation of the subchondral plate, thus exposing the defect to the vascular system though the marrow area. This leads to the migration of MSCs to the damaged area, where they undergo the chondrogenic differentiation. Nonetheless, in many instances the repair tissue is made up of fibrocartilage that contains mainly collagen type I fibres, and does not meet the criteria precise for a functional tissue. Small defects can be repaired spontaneously with hyaline cartilage production, whereas larger defects will only be able to be repaired with the production of fibrous or fibrocartilaginous tissue, which are biomechanically and biochemically different from the normal hyaline cartilage. As a result, degeneration subsequently appears which can evolve into osteoarthritic change in some cases.

Focal cartilage defects have been detected in up to 63% of patients undergoing arthroscopy of the knee and fortunately most of them remain symptomless for a long time. However, symptomatic lesions can result in significant pain and morbidity and a prospective clinical study has demonstrated that the risk of patients with a cartilage lesion to progress to osteoarthritis is enhanced more than fivefold. Thus, such patients require a treatment filling the gap between palliation and resurfacing via arthroplastia. This need as well as the detailed knowledge we have about the functional elements of cartilage tissue, have turned cartilage repair into a pioneering and very successful area of regenerative medicine.
2.2.1 Therapeutic interventions without active biologics

2.2.1.1 Bone marrow stimulation

First approaches to heal cartilage by *in situ* regeneration date back to 1959. Pridie technique was directed to BM cells recruitment to be used in cartilage defects by drilling small holes into the subchondral BM space underlying the damaged cartilage regions. It was improved later on by reducing the size of the perforations and being then called microfracture technique which is now a frequently performed and well studied procedure (Steadman et al., 1999). This technique is based on the mechanism of mesengenesis or capacity of the non-differentiated mesenchymal cells in choosing a determined phenotype as a response to inducing or GFs. A non-differentiated cell from the BM can be promoted to different cell types such as osteoblasts, with a later maturing to osteocytes, chondroblasts and chondrocytes, but also to endothelial cells, mesothelial cells, fibroblasts or adipocytes. It is a cell signalling process of local cytokines on local cells. In order to achieve all this, the surgical technique is based on drilling the subchondral plate to get bleeding and a superclot that will become a scaffold and supply cells and proteins, starting this way the physiological cascade of the chondrogenic cell differentiation. Other alternative techniques of BM stimulation to regenerate cartilage would be abrasion chondroplasty and in case the articular surface remained untouched, the retrograde stimulation technique. Cartilage defects are repaired only with fibrous tissue or fibrocartilage when using these methods, probably because the number of chondroprogenitors recruited from the BM is too small to promote the hyaline cartilage repair and results are often followed by degeneration of the repair tissue. This was used as an explanation for the observations of other studies that good short term results may be followed by deterioration starting about 18 months after surgery. Clinical observations and theoretical considerations pointed towards several possible limitations of marrow stimulation techniques. The non-adhesive properties of the cartilage surface and the softness and shrinking of the superclot can lead to only partial defect filling and facilitate an early loss of repair tissue from the cartilage lesion. To avoid this, the treatment has been recently advanced into a matrix-supported technique in which the performed defect was stabilized in an additional way with a biomaterial. The microfractured lesion is covered with a collagen type I/III scaffold and it is called autologous matrix induced chondrogenesis (AMIC) (Kramer et al., 2006; Steinwachs et al., 2008). This technique has been developed to allow the treatment of larger defects by microfracturing and it is used as alternative treatment to autologous chondrocytes transplantation (ACT).

2.2.1.2 Autologous osteochondral transplantation: mosaicplasty

Autologous osteochondral mosaicplasty, sometimes known as osteoarticular transfer system, OATS, is an effective method for the resurfacing of osteochondral defects of the knee. The technique consists in transplantation of many osteochondral autologous plugs obtained from the periphery of the femoral condyle articular surface, which supports less weight and transferring them to create a durable resurfaced area in the defect (Fig. 9). The procedure shows some advantages regarding other repair techniques, such as the viable hyaline cartilage transplantation, a relatively short rehabilitation period and the possibility of carrying out the procedure in one only operation. However, the OATS limitations are the donor-site morbidity and a limited availability of grafts that can be obtained from the femoropatellar joint or the area adjacent to the intercondylar fossa. Other possible limitations are differences in bearing, thickness and mechanical properties between the donor’s and the receiver’s cartilages, as well as the graft
sinking into the surface due to the support of weight after surgery. Besides, the lack of filling and the possible dead space between cylindrical grafts can limit the repair quality and integrity. Lane et al. transplanted autologous osteochondral grafts into sheep knee joints and reported the lack of integration of the cartilage, which determined the persistence of gaps through the full thickness in all the specimens (Mishima et al., 2008).

Fig. 9. In mosaicplasty cylindrical osteochondral plugs are harvested from nonload-bearing sites in the affected joint and pressed into place within the osteochondral defect, creating an autograft “mosaic” to fill the lesion

2.2.1.3 Allogenic osteochondral transplantation

Osteochondral allograft transplantation is a procedure for cartilage resurfacing which involves the transplantation into the defect a cadaveric graft composed of viable, intact AC and its underlying subchondral bone. It is a well known resource, especially for tumour surgery. The defect size, its location and its depth are crucial factors for the suitability of the donor graft. Advantages of using osteochondral allografts are the possibility if achieving a precise architecture of the surface, the immediate transplantation of viable hyaline cartilage in a one-time procedure, the possibility to repair large defects, even half-condyles and the donor-site lack of morbidity. Gross et al. have reported results from fresh allografts in 123 patients with good clinical results in 95% of the patients after five years (Gross et al., 2002). There are different possible allografts. Fresh osteochondral allografts are generally used because both freezing and cryopreservation have proved to reduce the chondrocytes viability. Traditionally grafts have been obtained, kept in lactated Ringer’s solution at 4 °C and then transplanted in a week. Another alternative for allografts conservation and implantation is cryopreservation, which involves freezing at a controlled speed of specimens within a nutrients rich medium, a cryoprotector agent (glycerol or dymethyl sulfoxide), to minimize the cells freezing and keep their viability; finally, there is the possibility of fresh-frozen allografts, with the advantages of lower immunogenic capacity and less transmission of diseases but with lower chondrocyte viability.

2.2.1.4 Soft tissues transplantation

Two main theories support the practicing of covering the cartilage defects with soft tissues, such as perichondrium or periosteum. On one hand, the defect has to be covered mechanically and on the other, we know about the presence of pluripotential stem cells in the perichondrium and the periosteum cambium layer. The different factors able to promote these cells differentiation into active chondrocytes still remain unknown.
2.2.2 Therapeutic interventions with active biologics

2.2.2.1 Autologous chondrocytes implant

The clinical use of the autologous chondrocytes implant (ACI) technique was first reported by Brittberg et al. in 1994, following animal studies which had shown its effectiveness (Grande et al., 1989). In this method, chondrocytes are obtained from a biopsy taken from a non-weight bearing part of the patients cartilage, and are expanded in vitro, followed by the injection of a suspension of chondrocytes into cartilage defects, covered with autologous periosteal flap (Fig. 10). This technique premises are based on the capacity of adhesiveness of the cells to certain surfaces, they spread on them and proliferate producing their specific ECM. Although clinical results of the original ACI looked promising (Minas, 2001; Peterson et al., 2000), this procedure has some potential disadvantages, such as leakage of transplanted cells, invasive surgical method, hypertrophy of periosteum (Haddo et al., 2005; Kreuz et al., 2009) and loss of chondrogenic phenotype of expanded chondrocytes in monolayer culture (Benya & Shaffer, 1982). Second generation ACI, named membrane autologous chondrocyte implantation (MACI), has a similar procedure, but a collagen type I and III membrane instead of periosteum. This technique was introduced to improve the ACI problems, and biomaterials such as collagen type I gel (Ochi et al., 2002), hyaluronan-based scaffold (Manfredini et al., 2007) and collagen type I/III membrane (Bartlett et al., 2005) were applied to secure cells in the defect area, to restore chondrogenic phenotype by way of three dimensional cultures (Gigante et al., 2007) and to replace the periosteum as defect coverage. This is the way MACI technique is created a posteriori, by implanting autologous chondrocytes in three dimensional matrices of collagen types I and III, or hyaluronic acid.

Fig. 10. In autologous chondrocytes implantation (ACI) a chondral biopsy is taken from a donor site at the time of clinical examination to be treated with enzymes in the laboratory to obtain chondrocytes cultures that are re-injected under the periosteal flap

At present, only two prospective studies comparing the original and second generation ACI are available (Bartlett et al., 2005; Manfredini et al., 2007) and both studies show no significant differences in the short term clinical results. As for the first generation ACI, the newly regenerated cartilage often consists of fibrous tissue (Horas et al., 2003; Tins et al., 2005), possibly due to the limited number of chondrocytes and their low proliferation potential. Bone overgrowth that causes thinning of the regenerated cartilage and the violation of the tidemark are also of concern. Moreover, this method still sacrifices healthy
cartilage. Thus, these aspects limit ACI in the treatment of large defects and may increase the long-term risk of osteoarthritis development.

2.2.2.2 Mesenchymal stem cells therapy

TE based on cell and genetic therapy offers some of the most promising strategies of tissue repair, including AC repair. It is the science able to create alive tissue to replace, repair or strengthen ill tissue. Thus, the term tissue engineering refers to a wide variety of techniques. Regardless of the used technique, it needs four components (Fig. 2): a growth inducing stimulus (GF), cells that may respond to such influences, a scaffold that might provide a support for the tissue generation, and vascular support (angiogenesis and/or vasculogenesis). This approach involves the use of different cell types acting as chondroprogenitor cells and/or vehicles for supply of genes that synthesize therapeutic proteins. MSCs provide a new potential for cartilage regeneration, as their differentiation to several lineages can be induced, in this case into chondrocytes. Destiny of these cells within tissues is determined by specific cell-to-cell and cell-to-matrix interactions and is controlled by extracellular signalling molecules and their respective receptors and by events that control genetic transcription in a cell-specific way. It has been shown that several differentiation factors are required, such as the BMPs, the FGF and Wnt molecules, although they are not specific for chondrogenesis (Jorgensen et al., 2004). These factors promote the formation of cartilage as well as of bone in vivo (Noel et al., 2004), and the precise molecular pathways that rule each specific lineage are being researched.

Beside the characteristics of MSCs exposed before, these cells have self-renewal potential as well as multilineage differentiation potential, including chondrogenesis (Johnstone et al., 1998; Pittenger et al., 1999; Prockop 1997; Sacchetti et al., 2007). MSCs chondrogenesis was first reported by Ashton et al. (1980) and the first ones to describe a defined medium for in vitro chondrogenesis of MSCs were Johnstone et al. (1998), who used micromass culture with TGF-β and dexamethasone. Sekiya et al. (2001, 2005) reported that addition to bone BMPs enhanced chondrogenesis under the conditions employed by Johnstone et al. (1998). Nowadays, the micromass culture is widely used to evaluate chondrogenic potential of MSCs in vitro. However, this in vitro chondrogenesis does not mimic cartilage formation during development. During micromass culture, MSCs increase expressions of both collagen type II (chondrocytes marker) and X (hypertrophic chondrocytes marker) (Barry et al., 2001; Ichinose et al., 2005). Other cytokines such as IGF (Pei et al., 2008) and parathyroid hormone-related peptide (PTHrP) had been tried for better differentiation cocktails, but it is still difficult to obtain in vitro MSC-based cartilage formation comparative to native cartilage tissue.

Although BM is considered an acceptable source of MSCs some comparative studies show that MSCs from BM have more chondrogenic potential in vitro than those from the adipose tissue (Colter et al. 2001; Huang et al. 2005; Liu et al. 2007; 53, 54). Sakaguchi et al. (47) harvested human BM, synovium, periosteum, muscle and adipose tissue and isolated and expanded MSCs in a similar condition. They demonstrated that MSCs derived from synovium had higher chondrogenic potential than those from other mesenchymal tissues. Yoshimura et al. (71) also demonstrated in a similar way higher chondrogenic differentiation potential of MSCs from synovium in rats. Park et al. (72) showed that MSCs from BM and periosteum are superior to cells isolated from fat with respect to forming hyaline cartilaginous tissue when transplanted into cartilage defects in rats.

To start any regeneration based on MSC activity, first the cells have to be recruited to the damage site. Second step is adhesion to local matrix, followed by activation and extensive
proliferation to provide the necessary number of chondroprogenitor cells to build up new tissue. Finally, it is required to switch from expansion to chondrogenic matrix production via chondrogenesis induction, to build up the shock absorbance and gliding characteristics for a proper tissue function. Seamless integration with neighbouring cartilage and bone tissues depends on successful crosstalk between new and old tissues. For durable cartilage repair, the tissue eventually needs to regenerate a tidemark, get adapted to mechanical loading and build up a balanced tissue homeostasis.

Cell migration is a requisite for development from conception to adulthood and plays a major role in regeneration of all tissues. A number of studies demonstrated that chondrocytes migrate under the action of different stimuli, on or within planar and 3D matrices. Attracting factors include BMPs (Frenkel et al., 1996), hepatocyte growth factor (HGF) (Takebayashi et al., 1995), IGF-1 (Chang et al., 2003), TGF-β (Chang et al., 2003), PDGF (Fujita et al., 2004), FGF (Hidaka et al., 2006), fibronectin, fibrin and collagen type I (Maniwa et al., 2001). However, results remain contradictory for some of these factors, as testing of human chondrocytes revealed no effects for BMP-2, BMP-4, BMP-7, IGF and TGF-β in other studies (Mishima & Lotz, 2008), being IGF-1, PDGF (Fiedler et al., 2004; Ozaki et al., 2007; Ponte et al., 2007) and VEGF the ones that induced higher response (Mishima & Lotz, 2008). Effects of GFs vary in vitro and in vivo, regarding animal species and specimens' age, among other aspects. But it is generally accepted that GFs stimulate the synthesis of the cartilage ECM components, they inhibit proteases and activate their inhibition systems. Thus, TGF-β illustrates perfectly the complex as well as paradoxical nature of the action of the GFs, which on one hand can increase or decrease the expression and activity of some metalloproteinases (MMP) produced by articular chondrocytes, increasing MMP-9 and reducing MMP-2. Another anabolic factor for chondrocytes is IGF-I, which can keep chondrocytes phenotype in vitro, stimulate intensely the synthesis of proteoglycans and type II collagen, as well as block the harmful effects induced by IL1 on the proteoglycans degradation. On the other hand, both IGF-1 and TGF-β stimulate the expression on the cell surface of the subunits of integrins α3- and α5-, as well as adhesion of chondrocytes to fibronectin and collagen type II, being integrins, accepted as the main receptors, the molecules used by the cells (chondrocytes, in cartilaginous tissue case) to adhere to ECM. A new GFs family has been reported, Wnt, with a major role in chondrocyte differentiation. Wnt family members are important regulators of several development processes, including skeletogenesis. After the binding of Wnt to the Frizzled receptors family and the LRPS/6 co-receptors family, the canonical Wnt pathway will stabilize the β-catenin, which translocates to the nucleus and interacts with members of the TCF/LEF (β-catenin-T-cell factor/lymphoid enhancer factor) families to activate target genes. Whereas inactivation of β-catenin causes ectopic formation of chondrocytes at the expense of osteoblasts formation, the canonical Wnt pathway leads to enhanced ossification and suppression of chondrocytes due to the transcriptional downregulation of Sox9 (Boyden et al., 2002; Guo et al., 2004). In fact, Church and colleagues have shown that Wnt4 blocks the chondrogenesis start and accelerates the terminal chondrocyte differentiation in vitro, while Wnt5a and Wnt5b promote early chondrogenesis and inhibit terminal differentiation in vivo (Church et al., 2002). On the other hand, Wnt7 blocks chondrogenesis (Tufan et al., 2002). These studies illustrate that Wnt/β-catenin signalling play an essential role on MSCs by controlling osteoblastic and chondrocytic differentiations.

Once the process of activation and attraction for the tissue repair has been started, we have just to review MSCs proliferation or expansion. Requisites for human MSCs growth are
different than those for other species and several factors have been identified as potent mitogens, taking PDGF-BB, EGF and TGF-β as the most important ones, leading jointly cell migration and proliferation steps. MSCs have been expanded with foetal bovine serum (FBS), supplemented with GF, for research as well as for clinical use; this supplementation with FBS has several risks such as diseases transmission or immune reactions, which promoted the development of research lines with autologous human serum as substitute for FBS. Human platelet lysate (hPL) has been also proposed as a substitute for culture and expansion of MSCs, and some reports showed that there is a higher proliferation in hPL regarding FBS, keeping their differentiation potential including chondrogenesis.

Finally, as one of the basic columns of the tissue repair we have to highlight the importance of scaffolds, because treatment with MSCs requires cells and scaffold transplantation. Importance of such structures is based on their ability for a fast filling of defects, their raised persistence to carry out repair, they also achieve an uniform distribution of cells in an enhance volume and also because they provide an active environment that may allow the local delivery of local molecules to stimulate repair (Andrades et al., 2010). Many studies have reported that using several scaffolds improve the new tissue quality. Such scaffolds are based mainly on hyaluronic acid, polylactic acid and/or polyglycolic acid, which can help to keep the cells inside the defect and provide a chondroinductive matrix. Natural materials, such as agarose, alginate, gelatine and collagen derivatives are inferior than synthetic and hybrid materials, due to a poor resistance to mechanical stress, so their clinical usefulness is severely limited. We have to take on account that MSCs chondrogenic potential is favoured by hypoxia and that it does not only depend on hydrostatic pressure, but also on cell density within the matrix, as well as on the presence of GFs. It is suggested by the obtained information that scaffolds or matrices allow the cell differentiation and the maintenance of a mature phenotype (Fig. 11); this combined with the use of stem cells, provides us promising perspectives for the regeneration into a functional tissue (Becerra et al., 2010; Reddi et al., 2011).

Fig. 11. Scanning electron microscopy of natural alginate wire mesh containing chondrocytes

From the knowledge of these biological phenomena of in situ repair, adequate conditions for cartilage repair based on MSCs are considered. Although some studies demonstrate that non-differentiated MSCs transplantation in cartilage defects, without scaffolds and not having been chondroinduced provided good, it has been reported that the before mentioned cytokines and particularly the association of TGF-β and BMPs improve the cartilage repair when combined with MSCs. Such stimuli could be obtained by direct administration of recombinig GFs in the culture media or via transfer of the respective genes. Thus, the
possibility of considering genetic therapy as an applicable measure for the treatment of cartilaginous lesions arises.

2.3 Approaches for tendon regeneration

Tendons make part of a biomechanical chain formed by muscle, bones and tendon itself. Muscle contraction is converted by tendons into bone motion or vice versa; thus, tendon’s main function is the transmission of force. Far from being a passive element, thanks to its composition and structure tendon has an adaptive, dynamic behaviour to face special functional requirements.

2.3.1 Tendon composition, structure and mechanical properties

Tendon is a dense connective tissue. Having to withstand basically tensile stresses, tendons are bundles of fibrillar proteins aligned parallelly to the tendon’s longitudinal axis, with small amounts of other ECM components, specialized cells (tenocytes, fibroblasts), vessels and neuroreceptors. Between a 75% and a 96% of a tendon’s dry weight is constituted by collagen, around a 2% by elastin. These proteins are imbibed in a mucopolysaccharide gel, the ground substance, formed mainly by hyaluronic acid and chondroitin sulfate, proteoglycans (decorin) and glycoproteins (fibronectin), which may account for a 1% of the tendon’s dry weight (Crisp, 1972; Hooley, 1977). Collagen comes mainly as type-I collagen, with its characteristic hierarchical organization (Fig. 12) so important to understand the tendon’s overall mechanical behaviour (Kastelic et al., 1978; Kastelic & Baer, 1980; Baer et al., 1975; Silver et al., 2003; Wang 2006): tropocollagen molecules assemble into microfibrils, these microfibrils into subfibrils, and several subfibrils give rise to a collagen fibril, with a characteristic 65 nm periodicity visible in scanning electron microscopy. Assemblies of

![Fig. 12. Type I collagen hierarchical organization in tendon. Modified from Kastelic J et al. The multicomposite structure of tendon. Connective Tissue Research 1978; 6:11-23](image-url)
fibrils bound by a thin layer of connective tissue (the endotenon) form typically crimped planar ribbons, with a periodicity of the order of a hundred microns, visible for the optical microscope. Packages of these ribbons surrounded by the epitenon (a sheath of loose connective tissue) constitute one tendinous bundle or fascicle; several fascicles may constitute larger units, and a tendon may consist of several of these units surrounded, again, by a layer of connective tissue (paratenon). Blood and lymphatic vessels, nerves and cells reside in the endo-, epi- and paratenon. Elastin, as said, is much less abundant in tendon than collagen, and is believed to help recover the original configuration of collagen fibres after cessation of applied stresses thanks to its rubberlike elasticity. The ground substance is a highly hydrated gel that allows for the diffusion of nutrients, signals and metabolites to and from the cellular component of the tendon, contributing also to its mechanical behaviour as it is sheared during fascicle extension, (Minns et al., 1973; Kastelic & Baer, 1980).

Fig. 13. Mechanism of internal deformation of tendon. Modified from Wang JH. Mechanobiology of tendon. Journal of Biomechanics 2006; 39:1563-1582

The crimped geometry of the parallelly aligned collagen-I fibre bundles and the properties of the highly crystalline collagen fibrils are the main responsible for the tendon’s overall mechanical behaviour. The main feature of this behaviour is its nonlinear viscoelasticity, ‘nonlinear’ meaning that the tendon’s stiffness increases as it is progressively stretched, and ‘viscoelastic’ meaning that the mechanical response of the tissue to an external stimulus does not adjust instantaneously but lags in time, giving rise to the phenomena of stress relaxation and creep (Hooley et al., 1978; Monléon & Díaz, 1990). Thanks to both characteristics tendon is able to damp sudden stresses transmitted to muscles and to achieve a progressive adaptation of the whole biomechanical chain to varying mechanical stimuli. The origin of nonlinearity lies in the mechanism of internal deformation of tendon: the undulation (‘crimping’) of the collagen ribbons is not uniform, but its angles with the longitudinal axis of the tendon are distributed; thus, as the tendon is progressively deformed a varying number of ribbons first straightens out, and then become stretched (Kastelic & Baer, 1980; Monléon & Díaz, 1990). This gives rise to a typical nonlinear, convex stress-strain relationship, with an initial (‘toe’) region of low modulus extending up to some
2-3% of strain, and a subsequent ('linear') high-modulus part, which corresponds to a state in which most of the tendon fascicles have lost their rest wavy crimp and are bearing load (Fig. 13). Physiological regime of tendons lies in the strain interval up to 5-7%, but this figure may vary considerably depending on age, weight, tendon type and other factors.

2.3.2 Cell response to mechanical stimuli

Even though tendon is a very poorly cellularized tissue, its cells are very important during development and healing, and thus a consideration of their role is critical for cell therapy purposes. Endothelial cells and synovial cells are present in the peritendon, but specialized fibroblasts (tenoblasts and tenocytes) are the dominant cell type. Tendon fibroblasts align in rows between collagen fibre bundles, and are responsible for synthesizing the ECM proteins, organizing them into their characteristic structures, and remodelling the ECM during tendon healing. These processes occur as a consequence of the biochemical and mechanical stimuli transmitted to the cells by their ECM. Tendon cells respond to mechanical forces by altering gene expression, protein synthesis, and cell phenotype. Mechanotransduction (the conversion of mechanical stimuli into biochemical signals leading to cell response) is a not entirely understood complex process which involves the interaction of proteins from the ECM, transmembrane integrins and G proteins, and cytoskeleton proteins such as actin. This interaction triggers signalling pathways that lead to differential gene expression and protein synthesis by the cells (Wang, 2006). Increased ECM protein production occurs as a consequence of GF release stimulated by mechanical loading (Skutek et al., 2001; Kim et al., 2002); matrix remodelling is also influenced by mechanical stimuli, which enhance the secretion of matrix metalloproteinases (Archambault et al., 2002; Tsuzaki et al. 2003). Different mechanical loading conditions lead to varying proportions of ECM proteins produced.

2.3.3 Lesions, standard approaches and challenges posed to cell therapy

Weakly injured tendons tend to heal spontaneously, but the remodelled tissue usually has poorer mechanical properties than the original one. More extensive trauma and degenerative processes, tumors or congenital malformations may require different degrees of surgery, including transplantation. Autologous grafts are in these cases the golden standard, but they may result in donor site morbidity and there may be lack of sufficient supply; artificial prostheses have not until today stood up to the requirements to represent an alternative. Cell therapy and engineered tendon constructs would be of utility in these cases (Thorfinn et al., 2010). The pluripotency discovered in several cell types, embryonic and adult, opens the way to their differentiation into tenocytes and their transplantation into injured or defective sites. A pure cell supply strategy, however, may be appropriate to small defects and injuries, but does not seem to be sufficient in cases of extensive tissue loss or rupture; here cell supply will presumably have to be combined into an engineered tendon construct with biomaterials acting as supporting or guiding structures and maybe GFs enhancing matrix production, remodelling and neovascularization. It is a challenge for this strategy to identify suitable candidates for a scaffold material and architecture, for the cell type to be supplied, for the GFs, their concentration and their release kinetics, and, maybe, for a cell training strategy through convenient ex vivo stimuli in bioreactors.

2.3.4 Tissue engineering and cell therapy of tendons

The paradigm of the TE approach is a biodegradable scaffold seeded with cells and bioactive factors, such that the scaffold is progressively replaced by neotissue formed in situ,
hystologically and functionally normal. The scaffold must initially bear the full mechanical load, but this must soon be gradually transferred to the ingrowing tissue to ensure the mechanical stimuli on the cells necessary for them to differentiate and produce and organize the ECM. A part of this process may take place ex vivo, in bioreactors. In vitro and in vivo animal studies have been undertaken along lines aiming to understand the relative influence and cross-talk of all these factors: (i) scaffolds, (ii) cell types supplied, (iii) biochemical signals, and (iv) mechanical stimulation.

i. Three dimensional environments for cells have proved to be necessary to achieve in vitro significant tendon-like matrix production (Garvin et al., 2003), and such 3D scaffolds are also likely to make part of any successful in vivo strategy. Synthetic materials available for scaffold fabrication belong to the standard families of polyesters (polylactic and polyglycolic acid and their copolymers, polycaprolactone), and they have been assayed with different morphologies, including knitted and electrospun versions (Ouyang et al., 2003; Guo & Spector, 2006; Thorfinn et al., 2010; Ladd et al., 2011; Jiang et al., 2011). None of these synthetic materials, however, possesses mechanical properties approaching those of natural tendon; the less so when they have a porous or microfibrilar structure. Moreover, the effects of their degradation process have to be taken into account, since they imply local acidification. This is why many researchers show preference for different collagen-based gels, where cells are seeded and reside as in a 3D matrix, and can be tested in vitro (Garvin et al., 2003; Kuo & Tuan, 2008); these gels could also serve as vector (transport, localization) for the supply of cells in vivo. However, these collagen gels are even less resistant than the synthetic polymers, and thus their utility in vivo has to be limited to those cases involving only limited injuries and defects, and where more complex regeneration and extensive reconstruction is not required. Nonetheless, systems based on these gels could be the solution also for these latter cases if they could be engineered in vitro to develop a high modulus construct which would be then transplanted, and this is the hope of much current work. All in all, scaffold choice, its composition and structure, remains an open problem for tendon TE.

ii. The cells to be employed in tendon regeneration should be capable of producing and organizing into its functional structure the ECM of tendons; they may be adult or embryonic, differentiated or pluripotent (stem) cells, autologous or not. For obvious reasons, adult autologous cells seem those more probable to enter a clinical solution; and, since BM MSCs and adipose tissue-derived stem cells (ADSC) have been successfully differentiated to functional tenocyte-like cells (Altman et al., 2001; Hoffmann et al., 2006; Juncosa-Melvin et al., 2007; Lee et al., 2007), it is they who are receiving most attention. Bone MSCs, in particular, are cells likely to enter wounded areas, and they have demonstrated a paracrine effect on tendon fibroblasts, secreting factors which enhance cell migration and proliferation (Shimode et al., 2007). Significant results have been obtained with ADSC in vivo (de Matos Carvalho et al., 2011). However, the sole transplantation of MSC into tendon defects does not improve significantly the tendon’s microstructure, and the cells should be induced into the tenocytic lineage by specific molecules (Araque et al., 2011).

iii. Since a natural regeneration accompanies healing processes, an understanding of natural tendon healing and the cascade of signals involved in it is crucial for the design of cell therapy strategies. A number of GFs that play an important role during the inflammatory, repairing and remodelling stages of the healing process has been identified, the most important ones being IGF-1, PDGF, VEGF, bFGF and some of the
TGF-β family (Molloy et al., 2003). Specific molecules which selectively induce the tenocytic differentiation of MSC while suppressing their osteogenic and chondrogenic differentiation have been identified (Hoffmann et al., 2006); they may provide a powerful platform for successful tendon regeneration when combined with mechanical stimulation within scaffolds.

iv. Though MSC have been made to express tendon-like phenotype and produce aligned collagen-I, mechanical properties of the neotissue produced could not match those of native tendon unless the cells had been subjected to mechanical stimulation (Juncosa-Melvin et al., 2006; Benhardt & Cosgriff-Hernández, 2009). Several types of bioreactors have been developed which allow to apply load uniaxially, in a static or dynamic (cyclical) mode, to seeded constructs (Guo & Spector, 2006; Garvin et al., 2003; Abousleiman et al., 2009). With their help it has been possible to check hypotheses as to the importance of force magnitude, strain amplitude, time frequency of loading, loading duration, and synergisms with GFs on the proliferation, differentiation and ECM production of cells. An excessive mechanical conditioning has been shown to lead to tendon disorders and matrix degeneration, however; thus, optimal values of those mechanical parameters must be determined (Wang, 2006). Generally, cyclic stress application has resulted in better results than static stresses as regards matrix formation and fibre alignment (Kuo & Tuan, 2008; Benhardt & Cosgriff-Hernández, 2009; Nguyen et al., 2009).

Taking into account those concepts, we are currently investigating the potential of human MSCs to differentiate into functional tenocytes. This cell application is directed to heal tendon and ligament injuries using either biosutures (Fig. 14) or poly-l-lactic acid (PLLA) scaffolds microparticles (Fig. 15) that could represent adequate surfaces for MSCs adhesion, proliferation and differentiation to tenocytes.

3. Conclusion

In the last ten years we have published reports suggesting that MSCs have a promising potential to be utilized for regenerative medicine. For example, our laboratory has accumulated experience working in vitro with blood-, fat-, skeletal muscle-, BM-, and now synovial-derived MSCs, performing ectopic implants (in mouse and rat), preclinical trial with small animals (rabbit, using an osteochondral defect model), with big animals (sheep, using a spinal fusion model), and with a pilot clinical trial in a patient affected by osteomyelitis. Cells to be used for an efficient regenerative medicine should be chosen. Undifferentiated versus differentiated or predifferentiated cells will be the choice. A permanent solution will come when the new tissue built in the defect is of the same nature and is perfectly integrated in the whole structure in any pathology and in any age. Only in such as way structure and function will be fully recovered.

When regenerative medicine started several years ago, the main goal was for the implanted cells to directly participate in the reconstruction of the damaged tissue. But now, after the reported paracrine effects in several MSCs therapies we know that MSCs, far from building those tissues, they exert immunomodulatory functions, secreting, in addition, several bioactive molecules that inhibit apoptosis and scarring at sites of injury, and stimulate angiogenesis and mitosis of tissue-specific progenitors (Caplan, 2009; Ito et al., 2010; Park et al., 2010). These actions have been found either when the implanted MSCs coming from BM or adipose derived in adherent cell cultures (García-Olmo et al., 2010) or when the
mononuclear fraction of BM was infused. We cannot predict the extent of the paracrine effect, immunomodulatory, or if the effective replenishment of differentiated cells can be assigned, in each case, to the MSCs, or whether these effects have some degree of integration between them. We cannot even know if all those effects can influence the surrounding tissue positively during regeneration, but perhaps negatively towards the pathogenesis of cancer and metastasis (Kuhn & Tuan, 2010). For now, we can only say that in many cases, these actions have a certain synergy to the purpose they claim. In the future, it might be useful to know the responsibility of each action in the regenerative process in order to control it appropriately. All this indicates the necessity to highlight again the importance of tight control over the stem cell culture method in order to define the cell products for transplantation properly, according to the specific functional outcome sought.

Fig. 14. Fresh collagen type I containing human MSCs embedding a resorbable polyglactnic suture in vitro. After 30 min. of incubation at 37 °C, the collagen gelify and cells oriented around and along the suture line, as we can see under a fluorescence microscope (green: hMSCs transfected with the green fluorescent protein)

Fig. 15. Scanning electron microscopy of PLLA microparticles containing human MSCs attached to their surfaces after 14 days in culture, and their phenotypic features by confocal microscopy (blue: cell nuclei, green: actin cytoskeleton, red: collagen type I)
4. Acknowledgments

Laboratory of Bioengineering and Tissue Regeneration-University of Málaga (LABRET-UMA) is supported by grants from the Spanish (BIO2009-13903-C02-01, PLE2009-0163, PI10/02529, and Red de Terapia Celular, RD06/00100014), and the Andalusian Governments (P07-CVI-2781, PI-0729-2010, and PAID BIO217). CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund.

5. References

Prockop, D.J. (2009). Repair of tissue by adult stem/progenitor cells (MSCs), controversies, myths, and changing paradigms. *Molecular Therapy*, 17(6), 939-946.

Yue, W.M.; Liu, W.; Bi, Y.W.; He, X.P.; Sun W.Y.; Pang, X.Y. *et al.* (2008). Mesenchymal stem cells differentiate into an endothelial phenotype, reduce neointimal formation, and enhance endothelial function in a rat vein grafting model. *Stem Cells Development*, 17(4), 785-793.

Production of Clinical Grade Mesenchymal Stromal Cells

Pytlík¹, Slanař¹, Stehlík¹ and Matějková²
¹First Medical Faculty, Charles University, Prague
²National Tissue Center, Brno
Czech Republic

1. Introduction

Mesenchymal stromal cells (MSC, MSCs) are cells firstly described 35 years ago in bone marrow (Friedenstein et al, 1976), but present basically in all adult and fetal tissues, where they reside in the vessel wall as part of the population of pericytes (Crisan et al, 2008). These rare cells (10⁻⁶⁻¹⁰⁻⁴ of nucleated cells in various tissues – Werntz, 1996) received special attention of biomedical researchers as they are easy to expand and able to differentiate in various cell and tissue types (Pittenger et al, 1999, Battula et al, 2009, and many others).

Later, these cells were found to be little immunogenic and to have immunosuppressive properties, which they exert by action on T cells, B cells, NK cells and dendritic cells (Beyth et al, 2005; Corcione et al, 2006; Spaggiari et al, 2008; Spaggiari et al, 2007). Furthermore, MSCs do not necessarily need to differentiate into tissue of interest, but they can exert their therapeutic effect through secretion of various cytokines (Phinney & Prockop, 2007; Horwitz & Dominici, 2008). Use of these cells therefore appears to be a promising strategy for treatment of various disorders, including orthopedics, heart and vessel, or graft versus host disease (Shenaq et al, 2010; Mathiasen et al, 2009; Le Blanc et al, 2008).

Mesenchymal stromal cells cultivated in vitro are a mixture of cells of various clonogenic and differentiating properties, which are partly dependent on cultivation conditions, partly they are donor specific (Tsai et al, 2011; Friedl et al, 2009). There is no single marker which would distinguish MSCs from other fibroblastoid cells. Therefore, The International Society for Cellular Therapy set in 2006 minimal set of requirements which mesenchymal stromal cells should fulfill. These are: 1. adherence to plastic, 2. expression of CD73, CD90, and CD105 antigens, while being CD14, CD34, CD45, and HLA-DR negative, and 3. their ability to differentiate to osteogenic, chondrogenic and adipogenic lineage (Dominici et al, 2006). Every method used for production of MSCs must be shown to produce cells of above mentioned characteristics. There are several exception from these rules, however – for example MSCs derived from the adipose stromal vascular fraction are CD34 positive (De Ugarte et al, 2003), or can express HLA-DR in certain culture conditions (Tarte et al, 2010).

Though first clinical trial of mesenchymal stromal cells was reported as early as in 1995 (Lazarus et al, 1995), the transfer to clinics has been relatively slow and complicated by several issues, especially in the context of good manufacturing practice preparations of these cells. Among them are issues of cultivation medium, serum and supplementation used, suitable expansion systems and reproducibility of results. Mesenchymal stromal cells can be
freezed and stored (Haack-Sørensen & Kastrup, 2011), but it is not clear if autologous (customer specific) or allogeneic ("off the shell or "one size fits all") products are preferable. As a result of these problems, there is still no standard or universally accepted or preferred way how to produce mesenchymal stromal cells for clinical use.

In this review, we will focus on application of good manufacturing practice standards principles to MSC production, with reference to choice of starting material, cultivation media, serum and supplements, cultivation systems, cultivation process, quality control, efficacy and safety concerns. References to universal GMP principles will be made as appropriate and selected choices of clinical grade cultivation components will be provided, as authors knowledge permits. As cellular therapy is a quickly evolving field (both from the practical and regulatory point of view), we have to state that following paragraphs will not be by any means exhaustive, and they may be also subject of changes during the time. On the other hands, some of the outlined principles may apply to other somatic cell products as well.

2. Mesenchymal stromal cells as advanced medicinal products

Mesenchymal stromal cells (with some exceptions mentioned below) belong to advanced therapy medicinal products (ATMPs), according the EC Regulation No 1394/2007, together with other somatic cell therapy medicinal products. According to this regulation, somatic cell therapy medicinal product means a biological medicinal product that has the following characteristics: 1. contains or consists of cells or tissues that have been subject to substantial manipulation so that biological characteristics, physiological functions or structural properties relevant for the intended clinical use have been altered, or of cells or tissues that are not intended to be used for the same essential function(s) in the recipient and the donor (italics added by authors); 2. is presented as having properties for, or is used in or administered to human beings with a view to treating, preventing or diagnosing a disease through the pharmacological, immunological or metabolic action of its cells or tissues.

There is a significant trend to establish risk-based systems for regulation of ATMPs including mesenchymal stromal cell-based therapy products within the regulatory systems worldwide, although some countries did not follow this route so far (e.g., Australia). Numbers of governments have moved to introduce specific regulations for this sector, while others try to develop the traditional model of regulation for medicines and enable the regulatory authorities to respond to technology changes. The International Conference on Harmonization (ICH) established in 1990 in order to harmonize different regional requirements for registration of pharmaceutical drug products has no specific guidance document for cell products at the moment, although some guidance may be applicable (e.g. ICH S6, ICH Q5A-E). Clearly, there is insufficient worldwide unity of the regulatory approaches to cell based products at the moment.

Recently, the EU, USA, and Canada have implemented new systems for the regulation of ATMPs that are risk based oriented and specific for the geographic areas governed by appropriate local regulation.

The EU system formulates minimum quality and safety standards for harvesting, procurement, testing, processing, preservation, storage and distribution of human cells that need to be documented including donor selection procedures, traceability and adverse event reporting processes, GMP-based quality system, data and confidentiality protection. Within the EU, to assess the quality, safety and efficacy of ATMPs, including mesenchymal
stromal cells, Committee for Advanced Therapies (CAT) was established at the European Medicines Agency in accordance with Regulation (EC) No 1394/2007 on advanced-therapy medicinal products. The main responsibility of the CAT is to prepare a draft opinion on each ATMP application submitted to the European Medicines Agency, before the Committee for Medicinal Products for Human Use (CHMP) adopts a final opinion on the granting, variation, suspension or revocation of a marketing authorization for the medicine concerned. This decision is subsequently formalized by the decision of the European Commission that is binding in all EU member states.

The US FDA review process is conducted by the Office of Cellular, Tissue and Gene Therapies (OCTGT), Center for Biologics Evaluation and Research (CBER), under the Code of Federal Regulations Title 21 Parts 1270 and 1271. Health Canada regulates mesenchymal stromal cell derived products as medicines under Schedule D of the Food and Drugs Act. Health Canada also developed a regulatory framework under the Food and Drugs Act, “The safety of human cells, tissues and organs for transplantation regulations” (CTO Regulations 2007), which specifies requirements for the establishment of licensing and processing quality standards for cells, tissues and organs.

The Australian’s Therapeutic Goods Administration (TGA) plans to introduce new framework for human cell and tissue therapy products with a classification where mesenchymal stromal cells will fit into a Class 3 product – “A cell or tissue processed in a manner that may alter the structure and properties of the cell or tissue but does not purposefully alter the biological activity.” This class of products will require: TGA Licensed Manufacturer, Relevant cGMPs, Good Tissue Practice Standards, and TGA pre-market approval.

The regulatory systems distinguish between cell products with substantial manipulation or without. Now, it is clear that in vitro cultivation represents substantial manipulation for cells isolated from human body, making from naturally occurring cells an artifact, changed by the unnatural cell culture environment. Substantial manipulation involves also cell purification or enrichment, for example their selection by monoclonal antibodies against CD34, CD49a, or CD271 antigens, as outlined below. On the other hand, the term „substantial manipulation” does not apply to simple isolation of bone marrow mononuclear cells or adipose tissue stromal vascular fraction, and also can be argued that cells isolated in this way are intended for use for similar purposes as they fulfill in the body (i.e., regeneration of damaged or aging tissues). Therefore, it can be argued that the mentioned EC Regulation does not apply to such products, though this is still under debate. This does not mean, however, that the harvesting, isolation and preparation of these otherwise unmanipulated cellular products for clinical use does not require the adherence to good manufacturing practice (GMP) principles, but regulatory requirements in these cases are similar for blood banking products and therefore these cells may be prepared in suitable transfusion or blood banking facilities. As preparation of crude cell mixtures is less difficult than preparation of better defined cell populations, these were also used in preclinical and clinical trials, sometimes with encouraging results (Hernigou et al, 2005; Chochola et al, 2008; Akita et al, 2010). There is also a frank exception from the EC Regulation No. 1394/2007: custom-made (hospital) ATMPs, which are prepared on a non-routine basis according to specific quality standards, if they are used within the same member state in a hospital under exclusive professional responsibility of a medical practitioner to comply with a medical prescription for a custom-made product for an individual patient (Sensebé, 2010).
The following text focuses mostly on further manipulated MSCs, as production of such cells are much more complex and basic principles of good manufacturing practice as well as national and international regulation requirements have to be followed.

3. Good manufacturing practice principles

It has to be understand that good manufacturing practice guidelines are not instructions on how to manufacture products. Rather, these are series of principles that must be fulfilled during the manufacturing process. Their goal is to obtain a final product from defined materials, by a defined, documented and traceable way, by trained operators. Currently, cell products regulated as medicines must comply with the GMP for Medicinal Products. However, the GMP for Medicinal Products is not yet fully adapted for dealing with the unique circumstances of cell based products. The main principles are as follows:

Materials. Raw materials have to be of a documented quality. They should be certified by their manufacturer and their batches should be registered. This does not necessarily mean that all materials have to be of clinical grade, though this is clearly an advantage. When the clinical grade material is not available, sufficient documentation about its production and about composition of individual batches has to be obtained to minimize the risk of its contamination by undesired elements. The documentation about used materials have to be preserved for legally determined time period.

Manufacturing processes. Manufacturing processes have to be clearly defined by a set of instructions known as standard operational procedures. These should be written in clear and unambiguous language and easily available for operators.

Documentation. Each part of the manufacturing process have to be documented, beginning from the storage conditions of raw materials (freezer and fridges temperatures) to the final product. These records should demonstrate that the standard operational procedures were in fact followed and that the quality of the product is as expected. Any deviations from standard operational procedures have to be documented.

Validation. National legislations have usually sets of recommended procedures for certain parts of the manufacturing process (e.g., the required tests for bacterial contaminations are described in pharmacopoeia). These procedures are usually designed for conventional drugs and cannot be always used for somatic cell therapy products (e.g., sterilization, microbial tests of final product). The process called validation means the comparison of alternative procedures to the customary ones and proofs that these deviations from standard procedures bring desired outcomes.

Standardization. For good management of internal quality controls is a must. At present, there are also many programs of external quality controls performed by national authorities or commercial subjects. Manufacturer shall control storage areas to prevent mix-ups, deterioration, contamination, cross-contamination, and improper release or distribution of products. The storage temperature must be validated for each type of product and it is convenient to use devices with appropriate certificates.

Also set of standards have to be adopted for release of the product and these standards have to be followed and release criteria for every batch have to be documented.

Requirements for cellular products are also mentioned in International Standards for Cellular Therapy Product Collection, Processing and Administration (Fourth Edition, Version 4.1, April 2011) made by FACT-JACIE. These Standards are designed to provide
minimum guidelines for programs, facilities, and individuals performing cell transplantation and therapy or providing support services for such procedures. **Traceability.** Records of manufacture (including distribution) that enable the complete history of a batch to be traced are retained. A system is available for recalling any batch of product from sale or supply. If undesired effect of the product occur, the causes for possible quality defects have to be investigated and appropriate measures have to be taken to exclude the defective batch from further use and to prevent recurrence of possible mistakes. Also, database of undesired drug effect should be established (pharmacovigilance). **Training.** Operators have to be fully trained in standard operational procedures and their knowledge should be periodically examined.

GMP requirements are regulated by national and international legislatives and adherence to their principles is controlled by special agencies – in Europe, it is EMA (European Medical Agency), in the United States the FDA (Food and Drug Administration). Other countries, as Australia, Canada, Japan, Singapore or United Kingdom have highly developed GMP requirements. In other countries, especially in the developing world, the World Health Organization (WHO) version of GMP is used by pharmaceutical regulators and the pharmaceutical industry. Control of adherence to the GMP principles is performed by regular inspections by the governmental agencies.

4. GMP facilities

Good manufacturing practice facilities are the basic prerequisites for GMP preparation of medicinal products. They are designed to create the appropriate production environment, to prevent product contamination by raw materials and cross-contamination between batches and to ensure that standard operational procedures may be followed as intended. Again, GMP facilities for somatic cell therapy products may differ from facilities designed for manufacturing of conventional drugs.

Cleanroom designs should in general comply to International Standard ISO 14644 – Cleanrooms and associated controlled environments. ISO 14644 consists of eight parts:

- **ISO 14644-1:** Classification of air cleanliness
- **ISO 14644-2:** Specifications for testing and monitoring to prove continued compliance with ISO 14644-1
- **ISO 14644-3:** Test methods
- **ISO 14644-4:** Design, construction and start-up
- **ISO 14644-5:** Operation
- **ISO 14644-6:** Vocabulary
- **ISO 14644-7:** Separative devices (clean air hoods, gloveboxes, isolators and mini-environments)
- **ISO 14644-8:** Classification of airborne molecular contamination

It is above the scope of this chapter to run into details. In following examples, ISO 14644-1 requirements for airborne particulate cleanliness (Table 1), and scheme of contamination control concept following ISO 14644-4 (Figure 1) are shown.

The ascending requirements for cleanliness (from rooms class C to process core class A) is achieved by elaborate air conditioning systems, which ensure the highest pressure in the process core, with pressure gradient descending to peripheral parts of the facility. Air is blew into the facility by systems of high-effective or ultrahigh-effective particle filters.
(HEPA or UEPA). Between spaces of different classes of cleanliness, filters are designed for decontamination of materials as well as operating personnel. As is clear from what was written above, construction and running of GMP facility is very expensive. These expenses are naturally calculated to the final cost of the product. However, for small GMP productions, e.g. university based, or for Phase 1 clinical trials, solutions also exist (Xvivo production systems - www.biospherix.com, and others).

<table>
<thead>
<tr>
<th>ISO classification number</th>
<th>Maximum concentration limits (particles/m³ of air) for particles equal to or larger than the considered sizes shown below</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,1 μm</td>
</tr>
<tr>
<td>ISO Class 1</td>
<td>10</td>
</tr>
<tr>
<td>ISO Class 2</td>
<td>100</td>
</tr>
<tr>
<td>ISO Class 3</td>
<td>1 000</td>
</tr>
<tr>
<td>ISO Class 4</td>
<td>10 000</td>
</tr>
<tr>
<td>ISO Class 5</td>
<td>100 000</td>
</tr>
<tr>
<td>ISO Class 6</td>
<td>1 000 000</td>
</tr>
<tr>
<td>ISO Class 7</td>
<td></td>
</tr>
<tr>
<td>ISO Class 8</td>
<td></td>
</tr>
<tr>
<td>ISO Class 9</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Requirements for airborne particulate cleanliness

Fig. 1. Scheme of clean facility for GMP. Classification of rooms matches the requirements for airborne particulate cleanliness. For example, room of GMP class C requires cleanliness ISO Class 8 or higher.
5. Choice of the starting material

MSCs are most easily obtained from bone marrow or adipose tissue. Other tissues of interest involve cord blood, amniotic fluid, or trophoblast.

5.1 Autologous or allogeneic?

Use of autologous material may be preferable for number of reasons. It eliminates or significantly reduces risks of disease transmission and overcomes the problems with a suitable donor selection. This is true even if we assume that MSCs are non-immunogenic and suitable for use across histocompatibility barriers (Niemeyer et al, 2006, Hare et al, 2009), as cells from different donors do not grow equally well. Also, there are reports that MSCs grow better in autologous plasma than in fetal calf serum (Stute et al, 2004).

On the other hand, the indisputable advantage of allogeneic cells is the possibility of their cryopreservation for later use as “off the shelf” product. This means that for acute or unpredicted indications (trauma, burns) there will be no need to wait several days or weeks until autologous cells become available. Also, the quality tests, including sterility, differentiation or immunosuppressive abilities of cells, and viability of cells after thawing may be performed in full before the use of the product. Use of allogeneic, well characterized and quality-controlled cells also solves the problem of unpredictable growth of MSCs from different donors, as is autologous setting, adequate number of good quality cells may not be always obtained. Allogeneic MSCs have been used successfully in treatment of graft versus host disease (Le Blanc et al, 2008), or myocardial infarction (Hare et al, 2009). Most donors in Le Blanc’s and all donors in Hare’s work were unrelated and HLA-mismatched individuals.

The choice of autologous versus allogeneic cells will be also guided by the wider settings of their therapeutic use. For example, in academic settings, where small-scale production is sufficient and customized production of MSCs is feasible, autologous products might be preferrable. Also, it is possible that in certain countries it would be easier to obtain authorisation for autologous rather than for allogeneic products. However, in large-scale production setting, use of larger batches of an allogeneic product is probably inevitable.

5.2 Bone marrow

Bone marrow was the first source of MSCs for experimental and later for clinical use. For experimental use, it is still probably the best and most accessible, as small amounts of bone blood can be easily aspirated in local analgesia. Also, for small-scale experimental MSC cultivation, local hematology department may provide an easy access to bone blood when bone marrow samples from patients with known or suspected hematological disorder are taken for diagnostic purposes. However, one must be careful when MSCs are cultivated from hematological patients, as in certain diseases (acute and chronic leukemias, multiple myeloma, myelodysplastic syndrome) mesenchymal stromal cells may have slightly different properties from MSCs from healthy bone marrow (Garaoya et al, 2009), and may even harbor chromosomal abnormalities (Blau et al, 2007).

For larger scale and therapeutic purposes, where several hundred mililiters of bone marrow blood is necessary, bone marrow must be harvested under general anesthesia. Harvest is usually performed from posterior iliac crests similarly as for bone marrow transplantation.
for hematological disorders, i.e., in collection bags of vessels with an anticoagulant, usually heparin. There are several recommendations about the volume that should be taken in one aspiration, but they are somehow contradictory. Fennema recommends to harvest at least 8 ml portions, as in lower volume the yield of nuclear cells and MSCs is unpredictable. Also, second portion of up to 10 ml may be taken from the same site without significant loss of quality due to dilution by peripheral blood (Fennema et al, 2009). On the other hand, in older work Muschler concludes that aspiration of more than 2 ml of bone blood results in smaller number of colony forming units -fibroblast (CFU-F) (Muschler et al, 1997). It may be therefore prudent for each centre to establish its own aspiration protocol, which yields the best results in their settings.

For isolation of mononuclear fraction, several methods are available. For smaller volumes, Ficoll centrifugation method is usually used, and GMP-compatible Ficoll is available. In larger volumes, bone marrow is usually processed on blood separators, which is similar to harvest of peripheral blood progenitor cells. Sometimes, the older starch or dextran sedimentation methods are still in use. In any case, closed isolation system is preferable for mononuclear cell isolation. This may be challenging especially with small bone marrow blood volumes. Therefore, the alternative is to seed bone marrow mononuclear cells on plastic without previous enrichment, with or without preceding red cell lysis (Tarte et al, 2010, online supplement; Horn et al, 2008; Horn et al, 2011).

5.3 Adipose tissue

Multipotent stromal cells in adipose tissue reside in stromal vascular fraction (SVF), which can be easily separated from fat cells after collagenase digestion (Zuk et al, 2002; Gimble & Guilak, 2003). Adipose tissue is richer source of MSCs than bone marrow, as these cells account for almost 2% of cells in SVF (Valle et al, 2009). This means that from 200-500 g of fat, 100-300x10^6 MSCs can be obtained, a number that might be used for treatment even without further expansion (unpublished data). Adipose tissue mesenchymal stromal cells are CD34 positive and they may differ from bone marrow stromal cells a little, but not by their differentiating potential into three main lineages (Kern et al, 2006).

Adipose tissue MSCs may be obtained after lipoexcision or lipoaspiration. If any of these procedures has a clear advantage in number or quality of cells over the other, is still a matter of debate (Torio Padron et al, 2010), but lipoaspiration is far less invasive procedure. Also, lipoaspirates are superior to excisates from the point of view of their stability, as the cell number in aspirates remains stable even after 24 hours, in contrary to rapid decrease of their yield in the excised tissue (Bieback et al, 2010). There is also uncertainty about the part of the body which is the richest in adipose tissue-derived MSCs (Fraser et al, 2007; Jurgens et al, 2008), but this does not seem to be of great clinical importance. On the other hand, it was established that higher aspiration pressures (-350 mm Hg) are preferable to lower ones (-700 mm Hg), as they lead to higher cell yield (Mojallal et al, 2008).

The greatest disadvantage of adipose tissue in contrast to bone marrow is the necessity to digest the starting material by collagenase. From the technical point of view, besides manual method there are also automated devices which can produce SVF by good-manufacturing practice compatible method (TGI1200, Cytori Celution, Adistem et al). GMP compatible collagenase also exists, but is very expensive (Brooke et al, 2009). However, the advantages of adipose tissue seem to prevail and therefore, it may be expected that it will become more popular for MSC production than bone marrow.
5.4 Trophoblastic tissues
In general, trophoblastic tissues present an excellent source of cells for stem cell therapy, as they are abundant, their use is not connected with any ethical problems, and they contain developmentally young and putatively more plastic stem cells. The use of umbilical cord blood is well established in transplantation medicine (Wagner & Gluckman, 2010). Mesenchymal stromal cells can be retrieved from cord blood, Wharton jelly, and placenta (Wang, 2004; Flynn et al, 2007; Troyer & Weiss, 2008; Brooke et al, 2009). Mesenchymal stromal cells from trophoblastic tissues have been shown to have similar transcriptome, proteome, immunsuppressive and differentiation abilities as MSCs from bone marrow (Jones et al, 2007; Tsai et al, 2007; Barlow et al, 2008). Of these, umbilical cord blood MSCs were first described and probably most extensively characterized. They have higher proliferation capacity than bone marrow mesenchymal cells, but they are quite rare and even in experienced laboratories they can be successfully isolated from only about two thirds of cord blood units (Kern et al, 2006). Isolation of Wharton jelly and placental MSCs is in general similar to isolation of adipose tissue stromal cells in that digestive enzymes have to be used. However, they are more abundant and more easily isolated than MSCs from the cord blood.

One protocol for GMP isolation and expansion of placental MSCs was described recently (Brooke et al, 2009). Briefly, the placenta was aseptically collected and minced in small pieces, which were then digested by collagenase, type 1, and DNA-se I in Dulbecco’s modified Eagle’s medium, low glucose (DMEM, LG). After digestion, centrifugation tubes were pulse spun to remove large particular matter and mononuclear cells from the suspension were retrieved after centrifugation on Ficoll-Paque. Then adherent cells were isolated by cultivation on plastic for three days, in DMEM-LG with 20% FCS and 50 mg/l gentamycin. Cells were propagated for a total of five passages and cells not required for further propagation were cryopreserved after each passage.

After isolation, 74% of cells were found to be CD45+ leukocytes and 0.6% of cells were CD73+CD105+. Initial propagation in eight 175 cm² flasks yielded 40-100x10⁶ adherent cells, from which still approximately 25% were CD45+ (P0). Percentage of CD45+ cells rose to more than 50% during first passage (P1), but fell quickly under 1% in following passages (P2-P5). In first passage, there was 40% of CD73+CD105+ cells and the percentage was above 90% in successing passages. Cell recoveries after cryopreservation were 96% from P2, 100% from P3, and 60% from P4 and P5. 120x10⁶ MSCs from one placental unit was infused to a patient suffering with acute myeloid leukemia, who was co-transplanted with two units of umbilical cord blood (HLA-mismatched with infused MSCs). Though the hematopoietic engraftment could not be fully evaluated because of early death of the recipient, the infusion itself was reported to be uneventful.

This report shows that large numbers of MSCs can be obtained from human placenta. However, at least two passages have to be employed to deplete the final product from hematopoietic cells. The manufacturing procedure was reported to be labour-intensive and time consuming, using the open system of plastic cultivation flasks. However, this report shows that placental tissue can be used as an alternative source to bone marrow or adipose tissue for allogeneic applications, as is engraftment or treatment of graft-versus-host disease in blood progenitor cell transplantation setting.

5.5 Enrichment of starting material for MSCs
Mesenchymal stromal cells do not have any particular markers or antigenes to allow for an easy separation, as in case of CD34+ or CD133+ stem cells, or CD3 lymphocytes. Essentially,
two ways of enrichment of mononuclear cells for MSCs in the starting population are depletion of lineage-positive cells, or selection for MSC-containing fraction. RosetteSep® Mesenchymal Enrichment Cocktail (StemCell Technologies) contains monoclonal antibodies against hematopoietic cells (CD3, CD14, CD19, CD38, CD66b and Glycophorin A) and is mixed with bone marrow blood before separation on Ficoll gradient. Lineage positive hematopoietic cells form rosettes with erythrocytes and sediment with them. For selection of MSC-containing fraction, antibodies against CD271 (Jarocha et al, 2008; Poloni et al, 2009), or against CD105 (Jarocha et al, 2008), were used. Besides, while cited studies reported good results, Bierback reported worse results for RosetteSep® and CD271+ separation compared to plastic adherence, at least when MSCs were grown in platelet lysate (Bieback et al, 2009). Furthermore, monoclonal antibodies are expensive and they add another element into altogether complex process of GMP isolation and expansion of MSCs. If no new, revolutionary strategy for MSC enrichment will emerge, it is therefore unlikely that enrichment of starting material will become a standard procedure in GMP mesenchymal stromal cell production in the near future.

6. Cultivation conditions

The choice of cultivation conditions is of uttermost importance, with respect to GMP requirements. All components of the cultivation system should be fully characterized, certified or validated, and their robustness and stability of performance of the whole system have to be assured. However, in practical way, this might be quite challenging. As patented techniques and formulas are used for production of many ingredients, from surface treatment of cultivation vessels to the formulations of medium composition, both the researcher and regulatory agency have sometimes to rely on incomplete information. From this point of view, it is questionable whether the newest solutions just introduced to the market are always preferrable to older and well-tried technologies.

6.1 Cultivation vessels and systems

Traditionally, MSCs were cultivated in open systems. There is a plethora of companies (Corning, Nunc, TPP, to name at least few), that produce plastic flasks suitable for research-grade cultivation of MSCs. However, these do not seem to be optimal for clinical-grade production for several reasons:

1. Though these vessels are manufactured as sterile, tissue culture treated and apyrogenic, they are not certified for GMP-production.
2. They have to be opened before each manipulation. This was overcome e.g. in RoboFlask™ produced by Corning, which have silicon rubber seal that can be repeatedly penetrated by injection needle without the need to open the vessel.
3. Classical flasks are small and difficult to manipulate. For production of clinically meaningful numbers of MSCs, tens or even more than hundred of these flasks would be needed for every single patient. This may be partially overcome by use of larger flasks with several cultivation surfaces (e.g., CellSTACK® Culture Chambers, HYPERFlask® Culture Vessels, both Corning), on the other hand, the visual assessment of culture grow is very difficult under these conditions. Small bioreactors (CellCube®, Corning) offer as much as 80,000 cm² culture surface and accessories, as are setup kits, oxygenators, oxygen probes, etc.
4. There is a need for reseeding of MSCs after they reach critical density. Traditionally, this has been performed by trypsinization, centrifugation and reseeding of cells to new flasks. This is labour-demanding, expensive and increases the risk of microbial contamination. Possible solution of this problem may be the dynamic culture surface expansion, as described by Majd (Majd et al, 2009). The bottom of the cultivation vessel was made from high-extension silicon rubber, which could be mechanically expanded by iris-like device from the initial area of 10 cm² to area of 80 cm². In this device, cells were grown in constant densities for more than 9 weeks. Quick and hands-free harvest of adherent cells can be performed by several robotic systems, as is Tecan Freedom EVO (Tecan Group LTD).

Solutions mentioned above are mostly still suitable for small-volume production. However, larger robotic systems compatible with good manufacturing practice and good tissue practice principles, are available as well. Tecan Cellerity™ is a fully robotic modular system with several possible configurations, including HEPA filtered clean bench, robotic CO2 incubator, media refrigerator, etc. One possible configuration is shown on Figure 2. As is clear, these are already very complex and expensive solutions for large-scale commercial production. For smaller manufacturers, reasonable compromise between optimal and realistic will have to be achieved.

Fig. 2. Tecan Celerity configuration employing laminar box, incubator, liquid handling, cultivation media storage (down, left) and automatic processing of cell cultures

6.2 Choice of cultivation medium

A variety of cultivation media for mesenchymal stromal cells currently exist. Most commonly used are research-grade media DMEM (Dulbecco’s modified Eagle medium)
low-glucose, IMDM (Iscove’s modified Dulbecco’s medium) and alpha-MEM (minimal essential medium). The first of them is most commonly used and is present in EMEA approved GMP-compliant medium (Haack- Sørensen et al, 2008). It was shown that DMEM is preferrable to IMDM with the respect of preservation of MSC “stemness” (Pierri et al, 2011). However, alpha-MEM was found to better preserve osteogenic properties of MSCs than DMEM (Coelho et al, 2000), and in at least one work (Lange et al, 2007) also to lead to higher CFU-F retrieval in primary expansion (P0). Superiority of alpha-MEM over DMEM with respect to MSC expansion was found also in our own unpublished experiments.

There is a number of expansion media claimed to be GMP compliant: the LP02 basic medium (Lange et al, 2007), or the CellGro™ medium for hematopoietic stem cells (Pytlík et al, 2009). However, both of these need to be supplemented with fetal calf serum or some of its human alternatives (see below). Serum-free chemically defined media for mesenchymal stromal cells were also developed. Instead of serum they contain attachment factors for adherent cells and sometimes they have to be supplemented with recombinant cytokines. Of course, these media are all patented, thus the researcher does not know in full what is their exact composition. StemPro® is a serum-free medium pioneered by Invitrogen. While one group (Hartmann et al, 2010) were unable to cultivate MSCs in it without supplementation with 2% human serum (Hartmann et al, 2010), another group was more successfull after pre-coating of cultivation vessels with CELLStart™ xenogeneic free substrate (Invitrogen) or with human fibronectin and adding recombinant PDGF-BB, FGF-2 and TGF-beta (Chase et al, 2010). Another serum-free medium is MesenCult© ACF (StemCell Technologies) (Hartmann et al, 2010), which, however was not found comparable with DMEM and human platelet lysate in our hands (Matějková et al, unpublished data).

6.3 Choice of serum

First published results of clinical trials with MSCs used fetal calf serum (FCS) as a supplement to culture medium (Lazarus et al, 1995; Koç et al, 2000; LeBlanc et al, 2008). EMEA-compliant fetal calf serum does exist (Haack- Sørensen et al, 2008). Such a serum is produced e.g. by PAA Laboratories or Lonza. It origins in bovine spongiform encephalopathy-free countries (Australia, New Zealand) and is treated by irradiation to inactivate possible pathogens. However, fetal calf serum has several disadvantages. The first is great variability among batches with regard to MSC growth support, which necessitates expensive prescreening. The second is possibility of allergic reactions to xenogeneic protein. One group already reported presence of anti-fetal calf serum antibodies in blood of patients treated by MSCs expanded in FCS-containing medium (Sundin et al, 2007), and others reported anaphylatoxic reactions after administration of other cellular products prepared with FCS (Mackensen et al, 2000). Transmission of prion or viral diseases remains a theoretical possibility with fetal calf serum, too, though no zoonosis was reported in several thousands of patients treated with various cellular therapies manufactured with FCS so far.

As mentioned above, experiences with serum-free media are currently limited and reports are controversial. Therefore, before use of such media becomes widespread, human alternatives for FCS should be sought for. Autologous human plasma (AP) was reported to be at least comparable to FCS (Stute et al, 2004). However, given the amount of AP that may
be realistically obtained (200-250 ml maximum with one blood donation) and taken into account the amount of medium needed for replacements and serial passagings, AP does not seem to be a realistic option for clinical-scale MSC manufacturing. Experiences with allogeneic human serum (HS) are controversial, too. While several groups reported early senescence of MSCs grown with HS (Stute et al, 2004), others did not observe such a phenomenon (Bierback et al, 2009). In our hands, human serum (unsupplemented) performed worse than FCS and cells grown in human serum frequently underwent early adipogenic differentiation (Pytlík et al, 2009, and unpublished data). Thrombin-activated platelet releasate in plasma (t-PRP) and pooled human platelet lysate (p-HPL) are two other FCS substitutes of human origin. While both of them take advantage of release of platelet-derived cytokines and growth factors in plasma or serum, their manufacturing and subsequently their performance are substantially different. T-PRP is prepared by adding human thrombin to the platelet concentrate, with subsequent centrifugation and filtration through 0.2 μm filter (which also sterilizes the product). It is necessary to freeze t-PRP in small aliquots and thaw it just before preparation of fresh medium. The product may need additional centrifugation to remove possibly developing clots and heparin have to be added to the complete medium to prevent gel formation.

P-HPL may be produced either from buffy coats or from expired platelet concentrates. These are briefly centrifuged at room temperature and frozen in aliquots in -30 to -80°C. The freeze-thaw cycles may be repeated several times. One team found to be advantageous to adjust the number of residual platelets in platelet-rich plasma (after centrifugation) to 1.5x10^9/ml, as with these numbers, the performance of p-HPL was found to be optimal (Lange et al, 2007). Before use, the p-HPL should be spun at high speed (4000-8000 g) to remove the cellular debris.

In her seminal work, Bierback et al found that pHPL have better performance than tPRP, but also than HS and FBS. Besides higher yield of MSCs, use of pHPL also led to less contamination with hematopoietic cells (Bierback et al, 2009). P-HPL may be produced in most transfusion departments under GMP conditions, and its sources are not limited as are sources of autologous serum or human plasma. Even if it is not currently known which factors or cytokines in pHPL are responsible for its efficacy, it constitutes a suitable surrogate for fetal calf serum. First clinical experiences with MSCs produced in p-HPL supplemented medium were already reported (von Bonin et al, 2009).

6.4 Supplements

One of the first researchers who studied influence of various growth factors and other supplements on MSCs grown in serum-deprived conditions were Gronthos and Simmons (Gronthos & Simmons, 1995). They studied 25 different growth factors and found that the combination of insulin, platelet-derived growth factor BB (PDGF-BB) and epidermal growth factor (EGF), together with dexamethason and ascorbic acid, led to superior yields of MSCs over other combinations.

PDGFs were first found in platelets and they might be responsible for some of the platelet lysate activity in MSC growth. Some authors described role of PDGF during osteogenic, adipogenic and chondrogenic differentiation, however, the primary effect seems to be mitogenic. PDGF also inhibits differentiation of cells including MSCs. PDGF-BB form can activate all PDGF receptors and therefore is the best choice as a culture supplement. PDGF-BB may be obtained in GMP quality (CellGenix).
EGF has similar mode of action in MSC cultures as PDGF. It acts as a mitogen (Krampera et al., 2005), and in addition it can maintain stem cell properties of hMSCs. Indeed, Kratchmarova found that EGF and PDGF signaling leads to phosphorylation of similar set of proteins (Kratchmarova et al., 2005), with the one exception, the proteins of PI3K pathway, which is phosphorylated by PDGF only. Therefore, synergism of PDGF and EGF in Gronthos & Simmons work seems a little surprising and our experiments have shown that in certain cultivation systems, their action may be redundant (Stehlík, unpublished data).

Subsequently, other growth factors were found to be useful in MSC expansion: Fibroblast growth factor 2 (beta FGF or FGF-2) was found not only to enhance growth of CFU-F colonies, but also to preserve stem cell characteristics of MSC (Tsutsumi et al., 2001; Bianchi et al., 2003). In one work, macrophage colony-stimulating factor (M-CSF) was found also to stimulate expansion of MSCs (Jin-Xiang et al., 2004). FGF-2 factor, clinical grade, is also available from CellGenix. Transforming growth factor beta (TGF-beta) is known to induce so-called epithelial-mesenchymal transition (EMT), i.e., process that enables polarized epithelial cells to acquire a motile fibroblastoid phenotype (Wendt et al., 2009). It also induces chondrogenic differentiation of mesenchymal stromal cells. However, TGF-beta was also found to promote growth of MSCs in serum-free medium, together with PDGF-BB and FGF-2 (Chase et al., 2010).

6.4.1 An example of MSC cultivation with cytokine-supplemented medium

We have developed a rapid cultivation procedure of MSCs grown in CellGro™ for Hematopoietic Stem Cells clinical grade medium supplemented with 10% human serum and five Gronthos & Simmons supplements (insulin, ascorbic acid, dexamethasone, EGF, PDGF-BB), further enhanced with FGF-2 and M-CSF. This medium, though not serum-free, enabled us to expand MSCs significantly in a single step from bone marrow mononuclear cells. Yields of MSCs were consistently above 10^6 MSCs per 10^6 seeded bone marrow mononuclear cells after two weeks of cultivation. Furthermore, medium did not require change and also hematopoietic cells did not require removal. The only manipulation was addition of supplements three times during the two week cultivation period. MSCs cultivated in this medium had phenotype comparable with MSCs cultivated in alpha-MEM + fetal calf serum and were able to differentiate to three mesodermal lineages (Pytlík et al., 2009). During further development, we successfully transferred this technology to RoboFLASKs™ (Corning) with silicon rubber seal, which was only three times perforated by blunted needle. Cell harvest was also successful without opening the RoboFLASK™.

This cultivation method is very simple, easily transferrable to GMP environment and enables to expand enough MSCs for clinical applications during single two-weeks expansion. After further validation, it may become a solution for MSC production by smaller companies or academic facilities.

6.5 Antibiotics

In preclinical research, cultivation media are often supplemented by antibiotics, usually penicillin-streptomycin combination. However, use of antibiotics, especially beta-lactams, is not advocated for clinical-scale production, as they may mask bacterial contamination. Also, they have allergenic potential. Aminoglycoside antibiotics may be neutralized by charcoal adsorption (Kielpinski et al., 2005), or on special membrane filters (e.g., TTHVAB210 by Millipore, Steigman et al., 2008). However, the most preferable option is not to use
antibiotics at all and to secure sterility of the product by strict adherence to principles of asepsis, rather than antisepsis.

![Comparison of yields of MSCs grown in different media.](image)

6.6 Harvesting of adherent cells

Harvesting of adherent cells is usually performed by EDTA-trypsin solution. Trypsin is typically porcine, and therefore not optimal for GMP production of MSCs. An alternative, TrypLETM Select (Invitrogen) is a recombinant bacterial enzyme, produced on dedicated animal origin-free equipment, GMP compliant. It is available in two strengths and the more concentrated (10x) is recommended for MSC harvest. Its performance is at least comparable to classical EDTA-trypsin and it has been already used for clinical-grade preparation of mesenchymal stromal cells (Brooke et al, 2009). Similar performance has also Sigma product from corn, TrypZean (Carvalho et al, 2011).

6.7 Cryopreservation of cellular products

MSCs can be cryopreserved, however, as with their expansion, no method is universally accepted and data differ significantly when recovery rates from different freezing methods and formulas are reported. As most experience in GMP cryopreservation of cellular product have been made with hematopoietic progenitor cells (HPCs), in some centres, protocols derived from HPC-freezing ones are used for MSC cryopreservation as well. Also, bags used for cryopreservation of MSCs are the same as used for HPC freezing and storage. On the other hand, other teams simply extend their experience with research-grade freezing and cryopreservation to clinics.

Most cryopreservation techniques use a mixture of cell culture media, animal sera, and dimethylsulfoxide (DMSO) as a freezing solution. DMSO has been extensively used as a cryoprotectant because of its high membrane permeability. However, despite the protection
this cryoprotectant offers, DMSO can be damaging to cells when used in high concentration, especially during the thawing procedure. Also, if not removed, it can cause adverse reactions in patients (nausea, vomiting, tachycardia, hypotension, etc.). Other cryoprotectants, as methylcellulose, sucrose, threhalose, glycerol, hydroxyethylstarch, polyvinlypyrrolidon, or various combinations of these were tested, however, in the end none of them has been found to be superior to DMSO. Therefore, the main issues in development of GMP freezing and cryopreservation protocols is the choice of serum (if any), and the adjustment of the DMSO concentration to lowest possible level.

Haack-Sørensen et al (Haack-Sørensen et al, 2007; Haack-Sørensen & Kastrup, 2011) advocates the use 5% concentrations of DMSO together with 95% fetal calf serum. Control-rate freezing method (freezing at rate of 1°C per minute) is employed, as this was clearly found to be better than uncontrolled freezing (Fuller & Devireddy, 2008). Cell concentration should be between 0.5-1x10^6/ml (Goh et al, 2007). It is essential that all procedures beginning with adding DMSO and ending with thawing, are performed at 4-8°C on ice and after thawing, the cell suspension is quickly diluted to lower the DMSO concentration. While probably not better than other protocols (the cell viability or CFU-F retrieval after thawing is not presented), this method is quite simple and may be quickly adopted for GMP conditions, if use of FCS is plausible. Autologous serum might be the best alternative to FCS, if serum is needed at all, however, its use is limited by the same problems as its use in MSC cultivation (Reuther et al, 2006). Human allogeneic serum is surely an option, too, but it still brings risk of disease transmission.

The question therefore is, if serum is needed at all for MSC cryopreservation. Other researchers found that even 2% DMSO, with culture medium (DMEM) without serum was as good as 10% DMSO with 80% human or fetal calf serum (Thirumala et al, 2010a, 2010b, 2010 c). Defined, serum-free and animal components-free freezing media, as is Cryostor™ CS 10 (StemCell Technologies, Woods et al, 2009), or Plasmalyte-A (Baxter, Steigman et al, 2008) are also available.

The results of freezing-thawing procedures with the respect to cell viability are controversial and difficult to compare. For similar protocols, recovery rates are as different as 50% to 90% of viable cells. Comparisons of CFU-F formation from unfrozen and frozen cells from the same passage were not reported, to our knowledge. The greatest problem with viability reports is that most researchers use only the simplest method for its evaluation, which is trypan blue exclusion. Freeze-thawing process may start early apoptosis in cryopreserved cells, while these cells still may appear as viable in the trypan blue exclusion test (Baust et al, 2002). Better tests (e.g., flowcytometric staining by DiOC₆ for analysis of mitochondrial transmembrane potential, together with propidiumiodine or 7-AAD to exclude dead cells) therefore should be employed. CFU-F assays, for (at least) post-hoc quality control would be also desirable, as in our hands, only half of colony forming ability could be retrieved after the freezing-thawing procedures (unpublished data). As is evident, cryopreservation of MSCs is still largely an unresolved issue and further attempts toward its optimization and standardization have to be performed.

7. Quality issues

7.1 Viability, clonogenicity and senescence

Viability of cells is traditionally performed by trypan blue staining in Burkers chambers. Special counting machines, which evaluate both cell concentration and tolluidin blue
permeability (Countess® from Invitrogen, Cellometer® from Nexcelom Bioscience) are also available, but their running is quite expensive. Flow cytometric staining by propidium iodine or 7-AAD may be more advantageous than trypan blue, especially when combined with suitable other fluorochrome to detect still viable, but early apoptotic cells. Clonogenicity of produced cells should be compared with cells produced by standard procedure by CFU-F formation (Colter et al, 2000). This test, which involves seeding cells in densities of 1.5, 3, 5, and 10 cells/cm² in a 100 mm Petri dish, is simple, inexpensive and has been shown in our hands to be highly reproducible. Its disadvantage, however, is the length of this test, which lasts from 7-14 days. This may be longer than the shelf-life of the final product. However, this testing might be useful as a part of a post-release evaluation of a product quality to ensure that possible failure of the treatment procedure was not due to poor graft quality.

Senescence is an underestimated problem in MSC production. MSCs have only limited number of population doublings, known as Hayflick limit, before senescence growth arrest occur (Hayflick, 1963). In MSC, this is typically from 20 to 50 doublings, depending on cell source and culture conditions (Izadpanah et al, 2006; Suchánek et al, 2007, Cholewa et al, 2011). Senescent cells not only cease to proliferate, but their differentiation properties are also impaired and they can differentiate to osteogenic lineage only. They can display aneuploidy without transformation (Tarte et al, 2010), and exhibit certain mutations, e.g., in p53 gene. P53 mutated MSC can migrate to mammary tissue and form an inductive microenvironment for breast cancer (Houghton et al, 2010). Senescence is easy to evaluate in non-confluent cell cultures by beta-galactosidase staining (Bandyopadhyay et al, 2005), and this test has been recently adapted for flow cytometry as well (Noppe et al, 2009). Senescent MSC have typical secretome and gene expression profiles – they secrete for example interleukin-6, matrix metalloproteinases, hepatocyte growth factor, or FGF2. These molecules can reinforce the senescent arrest or stimulate growth and invasion of established cancer (Coppé et al, 2008). Senescent gene expression profile of MSC – cultivated either with fetal calf serum or human platelet lysate – includes upregulation of hyaluronan and proteoglycan link protein 1 (HAPLN1), keratin 18 (KRT18), brain-derived neurotrophic factor (BDNF), or renal tumor antigen (RAGE), while pleiotropin (PTN) is downregulated (Schallmoser et al, 2010). From practical point of view, beta-galactosidase testing should become a routine pre-release quality test of MSC preparations, while rt-PCR testing for selected senescence-associated genes may be a part of post-release quality surveillance (see below).

7.2 Product characterization

The minimal set of requirements for cells to be recognized as MSCs are set in Introduction to this chapter (Dominici et al, 2006). However, testing the full set of these requirements for every batch can be challenging, as e.g. lineage differentiation lasts several weeks, which may be longer than the expiration period of the product. On the other hand, performance of various MSC products, especially in the autologous setting, may be at least partially donor dependent (Friedl et al, 2009). Therefore, a reasonable compromise has to be achieved depending on particular situation.

Full characterization of the product has to be performed in the preclinical phase of its development. These tests should show reproducible profile of surface markers, performed by flow cytometry or immunocytochemistry. Testing for surface markers may also reveal
some impurities of the final product, especially admixture of hematopoietic cells. Release standards (percentage of cells positive for given antigen, acceptable amount of undesired cells) should be set at this point.

If the manufacturing procedure differs from accepted standard (e.g., from cultivation of cells in DMEM or alpha-MEM medium with 10% fetal calf serum), full tests for differentiation properties should be performed to prove that the final product complies with the minimal set of requirements for MSCs. This may involve comparison of cells produced by alternative procedure with cells produced by standard way. These comparisons should be not only qualitative (Oil red staining for adipogenic, von Kossa or alizarin red staining for osteogenic, and staining for collagen II for chondrogenic differentiation), but also quantitative (e.g., calcium accumulation or triglyceride synthesis). If desired effect of MSC product is immunosuppression (e.g., for treatment of graft-versus-host disease), allogeneic mixed leukocyte reactions with admixture of various ratios of MSCs should be performed (Le Blanc et al, 2003).

Preclinical characterization of the product may involve also gene expression profiling. In current literature, there is a number of papers describing gene expression profiles of MSC obtained from various tissues or cultivated by different methods (Wagner et al, 2005; Tsai et al, 2007; Secco et al, 2009), and it might not be necessary to repeat these expensive, cumbersome and poorly standardised experiments in full. If it is necessary, Wang et al. provide a detailed protocol how to perform gene expression analysis (Wang et al, 2011). In any way, qualitative or quantitative testing for expression of selected genes of interest (genes related to growth, stemness, differentiation properties or senescence) might be useful. This testing could also apply to final clinical products, either as pre-release or post-release control of quality.

For quality testing of fully developed and approved product intended to clinical use, it must be kept in mind that the donor variability might substantially influence the final quality of the batch. Full testing for clonality, differentiation, immunosuppressive properties or gene expression might not be possible because of the short shelf-life of the product. Even when there is an intention to freeze the product before use, its performance might be different before freezing and after thawing (our unpublished experiments). However, it might be advisable to perform these tests as a part of post-release testing, to ensure the released product was of sufficient quality and to be able to show that possible treatment failure was not due to poor quality of the MSC product.

8. Safety issues

8.1 Donor screening
In general, the same set of examinations as for blood banking purposes should be performed. Testing for hepatitis B, C, HIV and syphilis are mandatory. In certain areas of the world, testing for HTLV-1 and/or Chagas disease may also apply.

8.2 Microbial contamination
Bacterial contamination of classical pharmaceutical products is excluded by standardized tests, as set for example in European Pharmacopoeia (EP, chapter 2.6.1), or US Pharmacopoeia (USP, chapter 71). These growth promotion tests (GPT) involve two different cultivation media - Fluid thyoglicollate medium and soya-bean casein digest
medium, and two different temperatures – 22.5°C and 32.5°C – for growth of each tested sample. However, this test takes 14 days to finish and is clearly unsuitable for products with short shelf-live. There are instructions on validation of rapid microbiological tests both in USP (ch. 1223) and EP (section 5.1.6). These require for alternative microbiological testing to ensure following, compared with standard GPT:

Specificity. All microbial strains must be detected and confirmed. Aerobic strains must be detected in the aerobic culture bottles. Anaerobic strains must be detected in anaerobic bottles. It should be confirmed that cell cultures themselves will not generate false positive tests. Microbial strains can be bought e.g. from ATCC (American Type Culture Collection), however, the set should also include isolates from microbiologically positive samples and from environment of the facility.

Limit of detection. Each challenge microorganism must be detected at less than 100 CFU but greater than 0 CFU.

Repeatability. All replicates inoculated with challenge microorganisms are determined to be positive.

Ruggedness. All strains must be detected and confirmed as prepared by different analysts.

Equivalence. Alternative method must detect challenge organisms sooner than the compendium method.

There are several solutions for rapid microbiological testing, but all have their advantages and disadvantages. Best comparable to pharmacopoeial methods are cultivation methods based on CO₂ detection (BACTEC™ – Becton Dickinson, BacT/ALERT® - bioMérieux), and they have already been approved for tissue products (Kielpinski et al, 2005). These are also relatively unexpensive, easy to handle and do not require much space. Results are typically obtained in 48-72 hours. DNA detecting tests (e.g., LightCycler® Septifast Test – Roche) may be more challenging to be validated, as they may not detect all possible contaminating organisms (especially the environmental isolates) and, on the other hand, they may detect DNA from unviable organisms. Also, the number of gene copies (GC) is not easy to compare directly with the number of colony-forming units (see also 8.3). However, these tests are attractive as they can detect microorganisms in less than 24 hours. Fluorescent cytometry tests (ScanRD1® AES Chemunex) provide ultra-rapid detection of microorganisms (90 minutes), but are very expensive and used typically by large pharmacological companies.

It have to be stressed that validation of an alternative microbiological testing method may be very laborious and time consuming and can take several years before successfully completed. This may change, as these tests are getting more widespread. Close cooperation with the regulatory agency from the very time such a method is contemplated, is necessary in any case. For a close introduction to the rapid sterility test implementation, see Gressett (Gressett et al, 2008).

A good question is what to do when final products – especially customized ones – are eventually found to be microbiologically positive. At that time already a lot of work and money have been invested in the product, not to mention a patient who might in the meantime undergo some kind of preparative procedure for cellular treatment. This is similar to situations in hematopoietic progenitor cell transplants, where even microbiologically positive graft cannot be withdrawn and discarded, as this would mean inevitable death of the patient in many cases. Positive grafts are found in wide range of 0-43% of cases (Lowder & Whelton, 2003), but surprisingly they do not appear to present unacceptable risks. In two
large studies, (Patah, 2007; Phinney, 2007) the frequency of positive grafts was between 1-
2%. While Phinney gave preemptive antibiotic treatment to the graft recipients, Phinney just
observed them. The frequency of adverse events was zero in the first study and close to zero
in second. Preemptive antibiotic treatment based on tested or presumed microbial
sensitivity might be a reasonable strategy for transplantation of microbiologically positive
products, under strictly controlled conditions.

8.3 Mycoplasma contamination
Mycoplasmas are microorganisms without cell wall, which may pass through sterilization
with 0.2 μm filters. They have quite complex requirements for survival conditions, but cell
culture media make good environment for their growth. As such, mycoplasmas present
significant threat to cell and tissue cultivation. European, United States or Japanese
pharmacopoeias state requirements for mycoplasma testing. Essentially, two types of tests
are used: first is inoculation of cell culture samples on a solid agar or in a liquid enrichment
medium, from which are mycoplasma cultures after several days transferred on agar. This
test is quite sensitive (10 CFU/ml), but takes 28 days to complete. In second method, the
indicator cell culture, samples are co-cultured with permissive cell lines (usually Vero cells)
and then stained with fluorescent DNA-binding dyes (DAPI or Hoechst). This approach also
takes time and is less sensitive than agar cultivation (100 CFU/ml).

Fortunately, there are several tests, based on nucleic acid testing (NAT), which have been
already validated, though NAT is not without its problems. First, it does not distinguish
dead cells from living ones. Second, the translation of gene copy numbers to colony finding
units is problematic. Not only all mycoplasmas detected by NAT are not necessary live ones,
but also CFU is not an equivalent to living cell – it is an expression of its ability to form
typical colony. Also, cultivation methods work with larger volumes (1 to 10 ml of medium)
than NAT tests (tens to hundreds μl). Therefore, enrichment of a starting material (e.g., by
high-speed centrifugation) may be necessary. It has to be assured that sequences of all
mycoplasmas are covered by single PCR reaction and it also has to be assured that this
reaction will not amplify sequences from related microorganisms (Streptococci, Clostridia,
Lactobacilli).

Mycotooll™ (Roche Diagnostics) is a test amplifying a part of the 16S rDNA of
Mycoplasmas. It was validated with the European Pharmacopoeia tests (Chapter 2.6.7.) and
is able to detect Mycoplasmas with sensitivity of at least 10 CFU/ml (Deutschmann et al,
2010). A quantitative MycoSensor QPCR assay kit was developed by Stratagene and found
acceptable in preclinical regulatory validation of amniotic MSC manufacturing protocol
(Steigman et al, 2008). For detail description of NAT-based Mycoplasma detection
techniques, problems with alternative non-microbial detection and possible other solutions,
see Volokhov (Volokhov et al, 2011).

8.4 Endotoxin testing
Endotoxins are lipopolysaccharides from gram-negative bacteria and are the most common
cause of toxic reactions resulting from contaminations with pyrogens. Reactions to
endotoxin can cause serious health problems, as is diarrhea, septic shock, marrow necrosis
and others (Opal & Steven, 2007). Testing for endotoxins is therefore a standard release test
for cellular and gene therapy products. The acceptable level of endotoxin in these products
is usually 5.0 EU/kg/dose.
Endotoxin is usually tested with the Limulus Amebocyte Lysate (LAL) method. The problem with this test is not the time (results can be usually obtained in 3-4 hours), but its sensitivity to external factors and complexity of its setting. Endosafe® PTSTM is a chromogenic LAL test that provides quantitative results in approximately 15 minutes (Gee et al, 2008). It has been already validated for testing of bone marrow mononuclear cells for cardiac regeneration (Soncin et al, 2009), and is relatively easy to use. For other applications, however, comparison with standard accepted method may still be necessary.

8.5 Tumorigenicity
There were several reports of spontaneous transformation of human MSC in cultures (Rubio et al, 2005; Wang et al, 2005; Rosland et al, 2009). Most, if not all, these results reflect cross-contamination of mesenchymal cultures with exogenous tumor cell lines (Torsvik et al, 2010), which hardly can be a concern in a well-conducted GMP facility. However, transformation of MSC was observed after prolonged cultivation in human telomerase immortalized cells (Serakinci et al, 2004). This should not again cause concern in production of non-manipulated MSC, however, it shows to potential danger in case MSC were genetically manipulated. Furthermore, these immortalized transformed MSCs lost the p16^{ink4a} gene, which was shown to occur occasionally in non-immortalized MSC cultures (Shibata et al, 2007). In conclusion, risk of spontaneous malignant transformation of human MSC products does not seem to be very high. The question of routine cytogenetic testing of MSC product has to take in account the fact of low sensitivity of classical cytogenetic examination which may easily miss potentially dangerous but still very small clone and certainly will miss most losses of heterozygosity or similar small genetic changes. Also, cytogenetic testing can lead to false-positive results, as it was shown that aneuploidy might in fact be quite common in MSC undergoing senescence, but not transformation (Tarte et al, 2010).

8.6 Clinical safety and surveillance principles
As the experience with somatic cell therapy is still limited, there are no universally applicable principles of clinical safety monitoring. Until sufficient information will be available, all recipients of somatic cell therapy, including the treatment with MSC, should be followed indefinitely (for a lifetime), and monitored for possible adverse effects of treatment. Adverse events should be collected in context of the clinical trials in the premarketing phase, and according to general pharmacovigilance principles in the postmarketing phase.

Possible acute complications connected with mesenchymal stromal cell treatment, as perceived from preclinical evaluation, are infusion related complications, immunological reactions (more probable with use of xenogeneic proteins during MSC production and/or after repeated use), and local reactions (with local application). Significant number of MSCs, especially from the Stro-1- fraction, engrafts in lungs (Devine et al, 2003; Bensidhoum et al, 2004), and lungs are the first organ attended by intravenously administered MSCs. Therefore, the possibility of MSC induced lung injury have to be taken seriously. In experimental animals, administration of large numbers of MSCs may cause stroke or even death. Therefore, it is desirable that all systemically treated patients would be closely monitored during the infusion and some time thereafter.

MSCs are little immunogenic and immune reactions caused by their administration therefore should not be problem. However, when cultivated in xenogeneic protein-
containing systems, they may internalize and present these proteins to recipient. This problem may become significant especially if repeated administrations of MSCs are planned (e.g., for graft versus host disease treatment), as first exposure of xenogeneic protein may cause priming of the recipient immune system and subsequent administrations may trigger an allergic reaction.

In the long-term follow-up, three issues seem to be particularly important: “maldifferentiation” of MSCs, tumor propagation, and disease transmission. “Maldifferentiation” of MSCs refer to differentiation in a tissue type not desired in the particular organ. It was shown that MSCs, in contrast to hematopoietic progenitor cells, produce calcifications after local injection to an infarcted heart (Breitbach et al, 2007). In another model of glomerular injury, MSCs prevented progressive renal failure when administered intraarterially to rats, but degraded in kidney to fat cells, surrounded by fibrotic tissue (Kunter et al, 2007). To our knowledge, nothing similar was observed after intravenous infusion or in humans, but similar undesired effects of human MSCs cannot be excluded.

For tumor formation, patients should be followed indefinitely. As shown above, the risks of spontaneous transformation of human MSCs are probably very small, however, there are concerns that MSCs may support tumor growth by a variety of mechanisms, involving immunosuppression, transformation of MSCs to CAFs (cancer associated fibroblasts), or tumor vasculature support (Momin et al, 2010; Klopp et al, 2011). Human MSCs have been shown to promote tumor development in several animal models (Zhu et al, 2006; Karnoub et al, 2007). In clinical practice, rather than facilitating growth of previously undiagnosed tumors, MSCs may promote tumor growth when applied to patients with established cancer, for example in hematopoietic cell transplantation setting. There is one report showing that patients who had cotransfused MSCs together with hematopoietic progenitor cells, had less graft versus host disease but more leukemia relapses (Ning et al, 2008). On the other hand, there are also reports that unmanipulated MSCs may also suppress tumor growth (Khakoo et al, 2006; Qiao et al, 2008). Large series of patients, optimally in randomized clinical trials, need to be followed for the frequency of various types of spontaneous tumors before the tumorigenicity of human MSCs may be excluded. The question of tumorigenesis will undoubtedly become even more significant if genetically engineered MSCs will be used for treatment of cancer or metabolic diseases, however, this is beyond the scope of this chapter (reviewed in Aboody et al, 2008 and Momin et al, 2010).

To our knowledge, disease transmission was not reported yet after mesenchymal stem cell therapy. Usual infection surveillance should be sufficient. Infectious origin of any febrile reaction during and after MSC application should be excluded and MSC recipients should be tested for hepatitis or HIV transmission in a fixed time after cellular therapy. If blood-transmitted infection is confirmed in recipient, donor of MSC should be investigated as well, in case of allogeneic therapy. If fetal calf serum is used for MSC expansion, it must be from bovine spongiform encephalopathy-free area, as noted above.

9. Conclusion

Mesenchymal stromal cell therapy offers solutions for a number of currently unmet clinical needs in modern medicine. These solutions might be less than optimal in certain cases, or may not fulfill the expectations at all. Mesenchymal stromal cell therapy may well provide only temporary clinical solutions, before better understanding of underlying principles of
diseases and their treatment become available and better treatment approaches (e.g., targeted delivery systems for cytokines and gene products, small molecules, etc.) will be developed. At this time, however, it seems that somatic cell therapy is worth exploring, despite the new challenges connected with it.

Because of the complex regulatory requirements, cell therapy will probably be very expensive and during this time, when its safety and efficacy are being tested, it will be difficult to find reimbursement of expenses connected with its development. An inequality in access to new treatments may result on one hand and difficulties with accrual of patients to clinical trials on the other. Therefore, it is crucial that all involved in mesenchymal stromal cell treatment, including funding institutions, regulatory institutions, academic facilities and private subjects, would cooperate closely together, on national or international platforms. On these platforms, fabrication of GMP-compatible facilities and development of GMP prepared products for cellular therapy will undoubtedly prove to be crucial in transferring the experimental knowledge into clinical practice. Falling behind the international level of knowledge and experience may have very undesired effects on healthcare in underdeveloped countries or regions. The purpose of this chapter was to provide at least partial solutions to challenges in this exciting new area of medicine.

10. Acknowledgment

This work was supported by grant from Czech Ministry of Schools and Education, MSM 0021620808, and TA01010964 from Technology Agency of Czech Republic.

11. References

Friedl, G.; Windhager, R.; Schmidt, H. & Aigner, R. (2009). The osteogenic response of undifferentiated human mesenchymal stem cells (hMSCs) to mechanical strain is inversely related to body mass index of the donor. *Acta Orthopaedica*, Vol.80, No.4, pp. 491-498, ISSN 1745 3674

Production of Clinical Grade Mesenchymal Stromal Cells

Production of Clinical Grade Mesenchymal Stromal Cells

in clinical grade medium for bone tissue engineering. Biomaterials, Vol.30, No.20, pp. 3415-3427, ISSN 0142 9612

Schallmoser, K.; Bartmann, C.; Rohde, E.; Bork, S.; Guelly, C.; Obenauf, A.C.; Reinisch, A.; Horn, P.; Ho, A.D.; Strunk, D. & Wagner, W. (2010). Replicative senescence-associated gene expression changes in mesenchymal stromal cells are similar under different culture conditions. Haematologica, Vol.95, No.6, pp. 867-874, ISSN 0390 6078

good manufacturing practice. *Journal of Translational Medicine*, Sep 8;7:78, ISSN 1479 5876

Production of Clinical Grade Mesenchymal Stromal Cells

Wagner, J.E. & Gluckman, E. Umbilical cord blood transplantation: the first 20 years. Seminars in Hematology, Vol.47, No.1, pp. 3-12, ISSN 0037 1963

Adipose-Derived Stem Cells (ASCs) for Tissue Engineering

Mathias Tremp¹, Souzan Salemi¹, Rita Gobet², Tullio Sulser¹ and Daniel Eberli¹

¹University Hospital Zürich, Laboratory for Tissue Engineering and Stem Cell Therapy, Department of Urology, Zürich,
²Division of Pediatric Urology, Department of Pediatric Surgery, University Children’s Hospital, Zürich, Switzerland

1. Introduction

A current challenge in the field of tissue engineering is soft tissue replacement. Techniques for soft tissue reconstruction include use of autologous fat transplantation, alloplastic implants and autologous tissue flaps. However, these approaches have disadvantages, including donor-site morbidity, implant migration, foreign body reaction and immune system rejection. The use of autologous stem cells expanded in vitro and combined with novel biomaterials for organ reconstruction offers a potential solution for replacement of tissue or whole organs. Stem cells, first identified in embryonic tissue and later in numerous adult tissues, possess the unique capacity to differentiate into wide range of tissue types. However, although embryonic cells are the most flexible of stem cell lines, they raise the problem of ethical issues. For tissue engineering, candidates of stem cells include embryonic stem cells (Ahn, et al.), induced pluripotent stem cells (iPS) (Crisan, et al.;2008, Parker, et al.;2007) and adult stem cells. The ability of adult stem cells to divide or self-renewal make them attractive source of stem cells for use in tissue engineering. A significant amount of current interest has focused on the possibility that adult human stem cells are the therapeutic alternative to embryonic stem cells because of their plasticity (Aoki, et al.;2010). The presence of self-renewing cells within the bone marrow of mice was reported in 1963 which was later known as hematopoietic stem cells (HSCs) (Becker, et al.;1963, Zhang, et al.;1999). Several years later, HSCs were identified in umbilical cord blood by other investigators (Aust, et al.; 2004, Dellavalle, et al.;2007). Furthermore, several other adult stem cell types such as neural stem cells (Dellavalle, et al.; 2007, Guilak, et al.;2010), were isolated and identified. Moreover, a population of plastic adherent cells were isolated from collagenase digests of adipose tissue.

Adipose tissue derived stem cells were termed as: adipose derived stem/stromal cells (ASCs), adipose-derived adult stem (ADAS) cells, adipose-derived adult stromal cells, adipose-derived stromal cells (ADSCs), adipose stromal cells (ASCs), adipose mesenchymal stem cells (AdMSCs), lipoblast, pericyte, preadipocyte, and processed lipoaspirate (PLA) cells. To prevent the confusion in the literature, the International Fat Applied Technology

The reason why adipose tissue would contain a stem cell population is not still clear. There is some discussion whether the cells are subpopulation of fibroblasts reside within the fat tissue or are perhaps mesenchymal or peripheral blood stem cells passing through the fat tissue (Crisan, et al.; 2008, Dellavalle, et al.; 2007).

The ASCs represent a readily available source for isolation of potentially useful stem cells (Sterodimas, et al.; 2010). In culture, they have shown to have an impressive developmental plasticity, including the ability to undergo multilineage differentiation and self-renewal (Liu, et al.; 2009). When ASCs are compared with BM-MSCs, further similarities have been demonstrated in regards to their growth kinetics, cell senescence, gene transduction efficiency (De Ugarte, et al.; 2003), as well as CD surface marker expression (Gronthos, et al.; 2001, Katz, et al.; 2005, Zuk, et al.; 2002) and gene transcription (Katz, et al.; 2005). Compared to bone marrow MSCs, ASCs have potential advantages for tissue engineering application, because of the tissue accessibility, multipotency and ease of isolation without painful procedures or donor site injury.

In this chapter we will discuss the potential use of adipose-derived stem cells in the field of tissue engineering.

2. Isolation and expansion of ASCs

The initial methods to isolate cells from adipose tissue were pioneered by Rodbell and colleagues in the 1960s (Rodbell; 1966, Rodbell; 1966, Rodbell and Jones; 1966) using rat fat tissue. These methods were further adapted for human tissues by several other groups (Deslex, et al.; 1987, Engfeldt, et al.; 1980, Ho, et al.; 2010). The current methods for isolating ASCs rely on a collagenase digestion followed by centrifugal separation to isolate the stromal/vascular cells from primary adipocytes. The pellet is resuspended with a basal medium containing 10% foetal bovine serum (Estes, et al.; 2008). The cell suspension is filtered through 100 µm cell strainer and the cells are plated and incubated at 37°C in the presence of 5% CO2. The medium is changed every second day until the cells reach 80-90% confluence. A large number of ASCs can be harvested in this manner, with yields of approximately 250,000 cells per gram of tissue (Aust, et al.; 2004, Guilak, et al.; 2010). In order to remove the use of animal products in human ASC cultures, a very low human serum expansion medium and a completely serum-free medium have been recently reported (Parker, et al.; 2007). Furthermore it was reported that use of platelet-rich plasma can enhance the proliferation of human ASCs. These results can support the clinical application of platelet-rich plasma for cell based, soft-tissue engineering and wound healing (Kakudo, et al.; 2008).

ASCs should be harvested at 80% confluence for freezing. Cryopreservation medium consists of 80% fetal bovine serum, 10% dimethylsulfoxide (DMSO) and 10% DMEM/Ham’s F-12. The cells should be stored in a final concentration of 1–2 million viable cells per milliliter of cryopreservation medium. Aliquotted vials are first frozen in an alcohol freezing
Adipose-Derived Stem Cells (ASCs) for Tissue Engineering

container and store and are stored at -80°C overnight. On the next day, the frozen vials can be transferred to a liquid nitrogen container for long-term storage. Successful storage of ASCs more than 6 months has been shown. This ensures the availability of autologous banked ASCs for clinical applications in the future (De Rosa, et al.;2009, Gonda, et al.;2008).

2.1 Characterization of ASCs
In order to characterize the undifferentiated animal or human ASC cells cultured in vitro flow cytometric and immunohistochemical methods are widely used (Gronthos, et al.; 2001, Zuk, et al.; 2001). The cell surface phenotype of ASC is quite similar to MSCs (mesenchymal stem cells). Both ASC and MSC cells express CD29, CD44, CD71, CD90, and CD105 (Zuk, et al.; 2002). In contrast, no expression of the hematopoietic lineage markers CD31, CD34 and CD45 was observed in either of the cultures. In addition the ASC cells express the neutral endopeptidase (CD10 or common acute lymphocytic leukemia antigen CALLA), aminopeptidase (CD13), and ecto nucleotidase (CD73). Furthermore, ASC cells produce Type I and Type III collagens, osteopontin, ostenectin, Thy-1 (CD90), and MUC-18 (CD146) (Gimble and Guilak; 2003). Different investigator have reported different pattern of expression. For example, while Gronthos et al. (Gronthos, et al.;2001) detected CD34 and VCAM (CD106) on ASC cells, Zuk et al. (Zuk, et al.;2002) did not. Likewise, while Zuk et al. (Zuk, et al.;2002) detected Stro-1, Gronthos et al. did not. These discrepancies could be due to the differences in cell isolation methods, how long the cells were cultured prior to analysis and sensitivity differences between immunohistochemical and flow cytometric detection methods (Zuk, et al.;2002, Zuk, et al.;2001).

3. ASCs applications
Adipose tissue has proven to serve as an abundant source of adult stem cells with multipotent properties suitable for tissue engineering and regenerative medical applications. ASCs can be differentiated into variety of cell types. Differentiation is commonly induced by insulin, dexamethasone, cyclic AMP agonist, β-glycerophosphate, heparin, ascorbate and different cytokines depending on the lineage type. ASCs like BM-MSCs, differentiate in vitro towards soft tissue such adipocytes, smooth muscle and cardiac myocytes when treated with established lineage-specific factors. In addition they can differentiate toward musculoskeletal tissues such as osteocytes, myocytes and chondrocytes. Furthermore neurogenic differentiation of these cells is reported by several investigators.

3.1 ASCs differentiation
3.1.1 Adipogenesis
ASCs in response to inductive compounds including glucocorticoid receptor ligands (dexamethasone), insulin, cyclic AMP agonist (forskolin) and peroxisome proliferator-activated receptor gamma (PPARγ) undergo adipogenic differentiation (Farmer; 2006, Hauner, et al.; 1989, Lazar; 2005, Zuk, et al.; 2001). During the differentiation process ASCs reduce their proliferation rate and undergo morphological changes. ASCs are induced in the adipocyte differentiation medium containing biotin, d-pantothenate, dexamethasone, methylisobutyxanthine, insulin and equivalent PPARγ agonist. After induction for 2 weeks in adipogenic medium the human ASC contain vacuoles filled with neutral lipid cells which
can be further stained for intracellular lipid droplets accumulation using an Oil Red O stain (Preece;1972).

In addition, these cells secrete increased amounts of the adipocyte protein leptin, and transcribe adipogenic mRNAs such as the fatty acid binding protein, aP2 and lipoprotein lipase (Halvorsen, et al.; 2001, Hauner, et al.; 1989, Sen, et al.; 2001). Some of these parameters such as leptin, aP2 mRNA levels were quantified and found to be increased by several hundred-fold during the differentiation process (Halvorsen, et al.; 2001, Sen, et al.; 2001). It is reported that ASCs harvested from female mice differentiate more efficiently into adipocytes than those from male mice (Ogawa, et al.; 2004).

One of the most important uses of ASCs is for the replacement of adipose tissue itself. Large soft tissue defects are a common problem following trauma, burns and oncological resections. Several studies demonstrated the in vitro differentiation of ASCs along adipogenic lineages, including the accumulation of intracellular lipid droplets, and the expression of characteristic proteins and enzymes (Ogawa, et al.; 2004, Tchkonia, et al.; 2002, Zuk, et al.; 2002). ASCs were used to seed artificial scaffolds and were further implanted subcutaneously in mice and rats (von Heimburg, et al.; 2001, von Heimburg, et al.; 2001). The cell-seeded grafts showed significant neovascularisation of the implant, as well as penetration of the preadipocytes or ASCs into the scaffolding, and their differentiation into mature lipid-laden adipocytes.

3.1.2 Smooth muscle

ASCs can be differentiated to smooth muscle cells (SMCs) and might offer a cell source for hollow organ engineering. For myogenic differentiation ASCs at passages 3 through 5 are cultured in smooth muscle inductive medium consisting of MCDB131 supplemented with 1% FBS and 100u/ml of heparin for up to 6 weeks at 37°C with 5% CO₂. The media is changed every 3 days and cell splitting is not required (Jack, et al.; 2009).

The cellular changes after differentiation can be investigated by real-time PCR at mRNA level. As reported the expression of muscle actin (SMA), calponin and myosin heavy chain showed an increase after growth in differentiation medium (Jack, et al.; 2009). The same was observed at protein levels, induction media induced differentiation of the ASCs into a smooth muscle phenotype in which the expression of smooth muscle specific proteins SMA, caldesmon, and myosin heavy chain (MHC) was increased (Jack, et al.; 2009).

Differentiation is a complex process and has a dramatical effect on cell size, shape, membrane potential, metabolic activity and responsiveness to external signals. One of the main characteristic of SMCs is their contractility which plays important roles in angiogenesis, blood vessel maintenance, and mechanical regulation of hollow organs such as bladder.

Since differentiated human ASCs express smooth muscle specific proteins they may prove to be of value in the repair of smooth muscle defects in the gastrointestinal and urinary tracts. Juan et al. reported that the ASCs from different sites show different myogenic differentiation abilities in vitro. ASCs from the adipose tissues of the nape of the neck and
vicinity of epididymis can be used as ideal seed cells for tissue engineering of lower urinary tract (Yuan, et al.; 2010). Similar study was performed by other group using human subcutaneous and omental adipose tissues. They could show that subcutaneous adipose tissue has higher differentiation capacity than omental adipose tissue which can be a suitable cell source for use in regenerative medicine (Toyoda, et al.; 2009).

3.1.3 Osteogenesis. Bone defect repair

For osteogenic differentiation confluent ASCs cells are incubated for 3 weeks in DMEM containing 10% FBS, 100 nM dexamethasone, 10 mM β-glycerophosphate and 50 μM L-naphthol AS-TR phosphate and 0.8% Fast Blue BB dissolved in 0.1 M tris buffer (pH 9.0). For osteogenic differentiation cells were also incubated in 1% alizarin red S for 3 minutes to detect calcium deposition (Sakuma, et al.; 2009).

Over a 2-4 week period in vitro, both human and rat ASC cells deposit calcium phosphate mineral within their extracellular matrix, and express osteogenic genes. Under osteogenic conditions ASCs are observed to express genes and proteins associated with osteoblasts phenotypes such as osteopontin, osteonectin, osteocalcin collagen type I, BMP-2 and BMP-4 (Halvorsen, et al.; 2001, Zuk, et al.; 2001). In addition ASCs are able to form mineralized matrix in vitro in both long term 2-D or 3-D osteogenic cultures.

In vivo, ASC cells embedded in porous cubes of hydroxyapatite/tricalcium phosphate form bone were used as implants in immunodeficient mice (Hicok, et al.; 2004). New osteoid, derived from the human ASC cells, is present within a 6-week incubation period (Hicok, et al.; 2004). This finding indicates that ASCs cells will have therapeutic applications in bone repair. The first case of autologous ASC use for osseous repair has been reported in the treatment of a calvarial defect in a 7-year-old girl (Lendeckel, et al.; 2004). Using different type of scaffolds, human ASC can form bone in immunodeficient mice (Hicok, et al.; 2004, Lee, et al.; 2003).

3.1.4 Myogenesis: skeletal muscle repair

There is several line of evidence that ASC cells can differentiate along each of the myocyte lineage pathways when cultured in myogenic induction medium containing 0.1 mM dexamethasone, 50 mM hydrocortisone, 10% FBS and 5% horse serum. ASCs express MyoD and myogenin, transcription factors regulating skeletal muscle differentiation (Pittenger, et al.; 1999, Zuk, et al.; 2001).

Skeletal myogenesis is characterized by a period of myoblast proliferation, followed by the expression of muscle-specific proteins and fusion to form multinucleated myotubules. Early myogenic differentiation is characterized by the expression of several myogenic regulatory factors including myogenic determination factor MyoD1 (Weintraub, et al.; 1991). Terminally differentiated myoblasts can be characterized by the expression of myosin and the presence of multiple nuclei (Silberstein, et al.; 1986).

In the first in vivo report, F Bacou et al injected ASCs into the anterior tibialis muscle of rabbits following cardiotoxin-induced injury. Consistent with prior work using satellite cells
treated muscles were found to be heavier, have an increased fibre area cross-section and exert greater maximal force (Boubaker el Andalousi, et al.; 2002).

3.1.5 Chondrogenesis
For chondrogenic differentiation, ASCs cells are grown to confluency in 30-mm dishes and incubated for 3 weeks in DMEM containing 1% FBS, 50 mM L-ascorbic acid-2-phosphate, 40 mg/ml proline, 100 mg/ml pyruvate, 10 ng/ml transforming growth factor (Harriman, et al.)-b3, and 1x ITS. Induction medium is replaced every 3 days. At the indicated time points, differentiated cells are fixed for 1h with 4% paraformaldehyde and rinsed with PBS. Accumulation of chondrocyte matrix is detected with alcian blue staining (pH 2.5, Wako) (Matsumoto, et al.; 2008).

3.1.6 Neuronal differentiation
There is preliminary evidence suggesting that human ASCs can display neuronal and/or oligodendrocytic markers. ADSC at passages 2–5 are seeded in six-well plates at 40%–60% confluence. After three washes with PBS, the cells are induced with NIM (DMEM supplemented with 500 mM IBMX, 200 mM INDO, and 5 mg/ml insulin) for 1 hr. The cells are then examined for the expression of neuronal markers S100, NF70, and nestin followed by hematoxylin-eosin (HE) staining (Ning, et al.; 2006).
The in vivo test for the therapeutic potential of ASCs looked at their effects when injected intraventricularly in rats. ASCs survived with increased engraftment at the site of injury compared with controls. Neural lineage markers microtubule-associated protein-2 and glial fibrillary acidic protein were expressed in some engrafted cells. Behavioural tests of the motor and sensory systems showed clear improvements in those treated with ASCs after infarct (Kang, et al.; 2003). It is not clear whether transplanted cells replaced the lost neurons or provided a support role for existing stem cells and injured neurons. Furthermore, in a co-culture model, Kang et al. studied the interactions between neural stem cells (NSCs) and ASCs. In comparison to laminin-coated dishes, ASC feeder layers showed ability to support the differentiation and survival of NSCs over 14 days in culture.

4. Biomaterials in tissue engineering with ASCs
Currently, autologous and allogenic adipose tissues represent a ubiquitous source of material for fat reconstructive therapies. However, these approaches are limited, and often accompanied by a 40–60% reduction in graft volume following transplantation. A number of factors including a stable scaffold support structure and vascularisation is necessary to support de novo adipogenesis and long-term maintenance of adipose tissue formation within adipose tissue engineered constructs (Patrick, et al.; 2002). Recently, cell-based approaches utilizing adipogenic progenitor cells in combination with biomaterial carriers for fat tissue engineering have been developed and were reported to promote both short-term in vivo adipogenesis and to repair defect sites (Borges, et al.; 2003, Patrick, et al.; 1999). To date,
however the efficacy of exogenously delivered stem cell populations to support the

generation of long-term volume stable adipose tissue in vivo is restricted by suboptimal

properties of their biomaterial carriers including insufficient biocompatibility and rapid

For functional tissue replacement such as bone, Silk-based biomaterials have previously

been demonstrated to offer exceptional benefits over conventional synthetic (e.g. poly-
glycolic and lactic acid copolymers) and natural (e.g. collagen type I) biomaterials (Meinel,
et al.; 2004). The slow degradation and mechanical integrity of silk scaffolds in comparison

with other conventional biomaterials such as collagen and PLA, above all for long-term in vivo

studies, suggest that silk fibroin-based scaffolds would be an optimal biomaterial for

long-term adipose tissue growth and function (Mauney, et al.; 2007). Also, previous studies

have demonstrated the ability of adipocytes to secrete various paracrine factors which can

positively influence both the migration and differentiation of preadipocytes (Shillabeer, et

al.; 1989). Mauney et al. studied biomaterials derived from silk fibroin prepared by aqueous

(AB) and organic (HFIP) solvent-based processes, along with collagen (COL) and poly-lactic

acid (PLA)-based scaffolds in vitro and in vivo for their utility in adipose tissue engineering

For in vitro studies, they used adipose-derived mesenchymal stem cells (hASCs) and seeded

them on the various biomaterials and cultured them for 21 days in the presence of

adipogenic stimulants (AD). In their study, hASCs (and hMSCs) cultured on all biomaterials

in the presence of AD showed significant upregulation of adipogenic mRNA transcript

levels (e.g. GLUT4) to similar extents when compared to noninduced controls (Mauney, et

al.; 2007). Also, oil-red O analysis of hASC-seeded scaffold displayed substantial amounts of

lipid accumulating adipocytes following cultivation with AD. Following a 4-week

implantation period in a rat muscle pouch defect model, both AB and HFIP scaffolds

supported in vivo adipogenesis either alone or seeded with hASCs (Mauney, et al.; 2007). On

the other hand, COL and PLA scaffolds underwent rapid scaffold degradation and were

irretrievable following the implantation period. The authors concluded that macroporous

3D AB and HFIP silk fibroin scaffolds offer an important platform for cell-based adipose

tissue engineering applications, and in particular, provide longer-term structural integrity to

promote the maintenance of soft tissue in vivo (Mauney, et al.; 2007).

Tissue-specific scaffolds and signalling systems are essential to differentiate stem cells into

the required cells and use them effectively to construct three-dimensional (3D) tissues

(Sterodimas, et al.; 2010). It has also been proved that adipose tissues engineered with ASCs

and type I collagen scaffolds can serve in vivo for the replacement of damaged tissue (Lu, et

al.; 2006). This has been confirmed by Zhang et al., where collagen I scaffold exhibited

excellent cellular compatibility and can be used as a vehicle for adipose tissue engineering

(Zhang, et al.; 2007).

Porous collagenous microbeads can be useful as injectable cell delivery vehicles for adipose-

derived stem cells, allowing ex vivo proliferation and differentiation on particles that are

small enough to be injected into a defect and molded into the desired shape without

migration of the cells. The cell-seeded microbeads can be injected through a needle into the

wound site, and agglomeration of the microbeads can retain the cells and microbeads in the

site (Rubin, et al.; 2007). Furthermore, the use of natural material hold promises in tissues

engineering.

Placental decellular matrix (PDM) holds potential as a scaffold for adipose tissue

engineering applications. The placenta is a rich source of human extracellular matrix (ECM)
components that can be harvested without harm to the donor. Constructs derived from the ECM may mimic the native environment of the body, promoting normal cellular organization and behavior. Natural materials also have advantages in terms of ease of processing, biodegradability and biocompatibility (Schmidt and Baier; 2000). Cell-adhesive placental decellular matrix scaffolds facilitate proliferation and viability, while differentiation is augmented when the cells are encapsulated in non-adhesive cross-linked hyaluronan (XLHA) scaffolds (Flynn, et al.; 2008). Incorporation of XLHA into the PDM scaffolds may improve the construct bulking properties and may influence cellular infiltration, differentiation and wound healing (Shu XZ; 2004).

Other candidate for suitable scaffolds is non-woven polyglycolic acid (PGA) and hyaluronic acid gel. In a recent study it has been shown that more adipose-tissue-like construct is regenerated when using type I collagen sponge than when the non-woven polyglycolic acid or hyaluronic acid gel are used (Itoi, et al.; 2010). In addition, significant evidence has been shown that ASCs and PLGA spheres can be used in a clinical setting to generate adipose tissue as a noninvasive soft tissue filler (Choi, et al.; 2006).

Altman et al. could show that human adipose-derived stem cells seeded on a silk fibroin-chitosan scaffold enhance wound healing and show differentiation into fibrovascular, endothelial, and epithelial components of restored tissue (Altman, et al.; 2009). In addition, it has been shown that transfection of human ASCs with liposome- enveloped xenogenic protein from a neonatal rat tissue preparation can induce differentiation of stem cells along the directed lineage (Gaustad, et al.; 2004). These observations support the hypothesis that the inductive biochemical and structural cues of the microenvironment are conserved across species and that a silk fibroin-chitosan delivery vehicle can provide a beneficial niche in supporting migration, proliferation, and differentiation of the applied cells (Altman, et al.; 2009).

Another complex biomolecule which has sparked great interest for tissue engineering is Hyaluronic acid which has been stated to support the growth and development of progenitor cells (Brun, et al.; 1999, Solchaga, et al.; 1999). The material has a progressive rate of biodegradation, lacks cytotoxicity and does not induce a systemic immune response or chronic inflammation in a human in vivo model (Stillaert, et al.; 2008). Hyaluronic acid-based (HA) scaffolds were demonstrated to be suitable materials for soft-tissue regeneration; they maintain volume when seeded with preadipocytes. Hemmrich et al. evaluated, in vitro and in vivo, human preadipocytes seeded onto plain hyaluronan benzyl ester (HYAFF®11) or HYAFF®11 coated with the extracellular matrix glycosaminoglycan hyaluronic acid and they found extensive formation of new vessels throughout the construct but with only minor adipose tissue (Hemmrich, et al.; 2005).

Long-standing, 3D predefined-shape adipose tissue from hAD-MSCs of human adipose tissue remains a challenge. Lin et al. cultured scaffolds (Gelatin sponges, monofilament polypropylene and polyglycolic acid meshes) with hAD-MSCs in adipogenic medium for 2 weeks before implantation, and implanted scaffolds were harvested after 2, 4, and 6 months in vivo. All of the successfully harvested scaffolds were filled with newly formed adipose tissue and had retained their predefined shape and dimensions (Lin, et al.; 2008). It has been shown that hAD-MSCs are not successful soft tissue filler if used alone (Lin, et al.; 2008, Moseley, et al.; 2006).

There are numerous adipose tissue engineering culture strategies in which the core tissue engineering principles comprising appropriate cells, scaffold, and microenvironment are optimized (Patrick; 2001). Specifically, there are static versus dynamic culture, co-
cultivation, and addition of growth factors, vascularization, and long-term sustainability of engineered constructs. The advantage of dynamic culture includes increased nutrient and oxygen delivery to cells within a 3D construct (Frye and Patrick; 2006). Improved bioreactor designs to address direct perfusion conditions are necessary to advance dynamic culture techniques (Choi, et al.; 2010).

It has been shown that hASCs express pericyte lineage markers in vivo and in vitro, exhibit increased migration in response to PDGF-BB in vitro, exhibit perivascular morphology when injected in vivo, and contribute to increases in microvascular density during angiogenesis by migrating toward vessels (Amos, et al.; 2008). In cell-assisted lipotransfer (CAL), autologous ASCs are used in combination with lipoinjection (e.g. Parry-Romberg syndrome). A stromal vascular fraction (SVF) containing ASCs is freshly isolated from half of the aspirated fat and recombined with the other half. The preliminary results suggest that CAL is effective and safe for soft-tissue augmentation and superior to conventional lipoinjection and microvasculature can be detected more prominently in CAL fat (Yoshimura, et al.; 2008).

Recently, adipose stem cells have proved to selectively induce neovascularisation and increase the viability of random-pattern skin flaps. This mechanism might be both due to the direct differentiation of ASCs into endothelial cells and the indirect effect of angiogenic growth factors released from ASCs (Lu, et al.; 2008).

5. Conclusion

ASCs provide an abundant and readily accessible source of multipotent stem cells. The use of autologous stem cells expanded in vitro and combined with novel selected biomaterials for organ reconstruction offers a potential solution for replacement of tissue or whole organs. ASC does have one important advantage over the other sources of stem cells namely easy availability. There is no human tissue as expendable as adipose tissue, making it relatively easy to isolate adequate numbers of ASCs for possible human therapies. Human ASCs can be ideal cell source for tissue engineering. They are available in large quantities of cells per individual, multipotent, are transplantable in an autologous setting. However, further studies are needed before ASCs can be used clinically. In particular, investigators need to demonstrate the safety and efficacy of ASCs cells in animal models, either alone or in combination with novel biomaterial scaffolds.

6. Acknowledgment

Both the authors Dr. Mathias Tremp and Dr. Souzan Salemi contributed equivalently in writing this chapter.

7. References

Adipose-Derived Stem Cells (ASCs) for Tissue Engineering

Rodbell, M. (1966). Metabolism of isolated fat cells. II. The similar effects of phospholipase C (Clostridium perfringens alpha toxin) and of insulin on glucose and amino acid metabolism. J Biol Chem Vol.241, No.1, pp. 130-9, ISSN 0021-9258

Rodbell, M., and Jones, A. B. (1966). Metabolism of isolated fat cells. 3. The similar inhibitory action of phospholipase C (Clostridium perfringens alpha toxin) and of insulin on

1. Introduction

Replacement of a wounded or destroyed tissue is now technically possible using an in vitro method of tissue engineering. This method involves isolating and culturing human cells (autologous or not) in optimal conditions to form a reconstructed tissue with similar characteristics to its in vivo counterpart. Burn victims were the first patients to benefit from this method in 1981, wherein reconstituted human epidermal tissues were used to treat the burns (O’Connor et al., 1981). The pioneered technique comprises epidermal cell isolation, culturing and grafting as a unique layer of cells organized in a sheet. The differentiation of the cells into a pluristratified epidermis is performed in vivo after grafting.

Numerous improvements, most notably the addition of a dermal part in skin tissue reconstruction have been made since the technique’s inception. However, the dermis is more difficult to reconstitute because of the complexity of its organization. Briefly, the dermis is a mix of matrix and cells, which are primarily fibroblasts. Moreover, the dermis is also composed of several structures such as the epidermal annexes (e.g., hair and sebaceous and sweat glands) and a network of capillaries. Several others cells like lymphocytes, or neurons are also more difficult to add on dermis despite their crucial roles in acquiring all the functions of the skin. Furthermore, the third part of the skin, the hypodermis is vital in vivo and addition of this tissue will increase the function of the grafted skin.

In classical cutaneous grafting with split- or full-thickness skin, the amount of dermis that is grafted to a wound bed inversely correlates with the degree of scarring and wound contracture which impacts the functional and cosmetic outcome (Bombaro et al., 2003). Similarly, dermal cells have been fundamental in the efficacy and quality of cultured keratinocyte grafts (Moulin et al., 2000) (El Ghalbzouri et al., 2002) (Kirfel and Herzog, 2004; Gallant-Behm et al., 2011) (Robert et al., 1997).

Currently clinics widely use dermis that is constituted of matrix and fibroblasts. The methods used to obtain cultured living dermis, which can be grouped into three different categories (Table 1) represent the three main methods of tissue engineering. These categories are based on the materials used to originate the matrix, such as biomaterials, biological materials and dermal fibroblasts. Biomaterials are materials that are not present in skin but
that are compatible with cells. Biological materials such as collagens are primarily derived from non-human sources. Lastly, the matrix may be created by human dermal fibroblasts themselves during culture. We refer to this last method as the “self-assembly method” in our lab. The cell source is primarily allogeneic, which allows for a high quantity production of tissues with a quick delay before grafting. Using this method, the cells are available to stimulate healing and are replaced by the patient’s cells with time. In a few cases (Hyalograft 3D™ or “LOEX” skin), cells are isolated directly from the patient’s skin. Using the approach, reconstituted tissues comprise a true graft and do not disappear with time. However, this method is time consuming and costly.

<table>
<thead>
<tr>
<th>Matrix type origin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomaterial</td>
<td></td>
</tr>
<tr>
<td>Biodegradable polyglactin mesh scaffold</td>
<td>Dermagraft™: Cryopreserved allogeneic fibroblasts are cultured on the mesh</td>
</tr>
<tr>
<td>Biological</td>
<td></td>
</tr>
<tr>
<td>Esterified hyaluronic acid matrix</td>
<td>Hyalograft 3D™: Autologous fibroblasts are cultured in the scaffold</td>
</tr>
<tr>
<td>Bovine collagen sponge</td>
<td>Orce™: Allogenic keratinocytes are seeded over a dermal scaffold containing allogeneic fibroblasts.</td>
</tr>
<tr>
<td>Bovine collagen sponge</td>
<td>Apligraft™: Allogenic keratinocytes are seeded over a dermal scaffold containing allogeneic fibroblasts.</td>
</tr>
<tr>
<td>Bovine collagen matrix</td>
<td>Permaderm™: Autologous keratinocytes are seeded on collagen gels made with autologous fibroblasts</td>
</tr>
<tr>
<td>Cellular</td>
<td></td>
</tr>
<tr>
<td>Fibrin matrix at the beginning replaced by fibroblast-secreted matrix</td>
<td>ICX-SKN™: Matrix is freeze dried prior to repopulation with allogeneic fibroblasts</td>
</tr>
<tr>
<td>Fibroblast-secreted matrix</td>
<td>VCT01™: Allogenic keratinocytes are seeded on top of a dermis made of allogenic fibroblasts secreting their own ECM</td>
</tr>
<tr>
<td>Fibroblast-secreted matrix</td>
<td>LOEX: Autologous keratinocytes are seeded on top of a dermis made of autologous fibroblasts secreting their own ECM</td>
</tr>
</tbody>
</table>

Table 1. Matrix types in commercial and pre-commercial tissue-engineered dermis or skins.
2. Fibroblast functionality

While simplified dermis comprised of matrix and fibroblasts are presently used to treat patients, several improvements in this tissue reconstruction method are necessary to obtain a skin with better functional acceptability.

The capacity of the skin fibroblasts to grow, remodel the matrix, secrete and degrade proteins, and produce numerous growth factors or cytokines is crucial for the regulation of the tissue structure and its cellular microenvironment. During reconstitution of dermal substitutes, the cells must retain their capacity to regulate their environment. Several parameters must be monitored to ensure proper fibroblast functions in growth capacity, matrix deposition and remodeling or differentiation state maintenance, all of which are inherent to these cells in normal human skin. There is a paucity of published studies dedicated to the analysis of the cell phenotype changes in vitro versus in vivo. This phenotype can change depending on several parameters, such as the cell duration of the cell culture (Endt et al., 2011), the location of the skin biopsies (Chang et al., 2002) and the age of the donor (Dumas et al., 1994). However, these results are highly controversial due to a lack of reproducibility by other groups (Ng et al., 2009) (Falanga et al., 1991).

2.1 Cell passage number

The replicative potential of a human cell population must be considered when those cells are used to reconstruct an engineered tissue. Indeed, because the replicative potential of most cells is limited, tissues reconstructed from cells at lower passage yield tissues of better quality. However, using cells promptly after their isolation and limited expansion is not always possible due to the requirement for several passages to obtain the quantity of cells needed. Therefore, knowing the cell passage range that yields the optimal results when using fibroblasts in tissue reconstruction is important.

We studied three fibroblast populations isolated from human skin biopsies at different times of culture, which were assigned by passage number. Fibroblasts were isolated using a collagenase solution (Rompré et al., 1990) and cultured with DME+10% fetal calf serum. When cells reached confluency, they were trypsinized and seeded until they reached the twelfth passage. Population doubling times, which were indicative of the cell growth capacity, the diameter of the cells, and the contractile capacity were evaluated from the first passage until the 12th passage.

Doubling times were calculated using the following formula: \[DT = \frac{\ln 2 \times t}{(\ln C1 - \ln C0)} \] where \(t \) is the culture duration, \(C1 \) is the number of cells at the end of the culture and \(C0 \) is the number of seeded cells. Doubling times of three cell populations isolated from human skin biopsies were studied, and no statistical difference was detected from Passage 1 to 12 (Figure 1A). This is in agreement with results reported by Endt et al. (2011), wherein analysis of only one fibroblast population did not reveal any doubling time differences before the 15th passage. The cell diameter variation has also been investigated (Figure 1B) as a marker of a cell phenotype modification. This parameter remained constant with time (17 \(\mu m \pm 0.83 \)) and lacked any apparent modifications.

Cell senescence has been shown to increase with time and has been detected in fibroblasts from the 30th passage (Endt et al., 2011). However, a higher sensitivity to apoptosis is also indicative of cellular aging. We monitored the apoptotic rate of cells using propidium iodide incorporation (Moulin et al., 2004) in the presence of 10% FBS, an additive that induces cell growth. A very low rate of apoptotic cells can be detected (<4%) at all passages and cell
populations (Figure 2A). When FBS was removed from the culture medium, the absence of a growth factor induced a slight increase in apoptosis (<4%) during the initial passages. However, passages 10 and 12 exhibited a marked increase in the apoptotic rate, which is indicative of a change in the cell’s response to apoptotic stimuli (Figure 2B).

Fig. 1. The doubling times and diameters of fibroblasts cultured for different durations

The contractile capacity of cells has been studied to evaluate one of their function during healing (Finesmith et al., 1990; Delvoye et al., 1991). Cells were seeded into a collagen gel according to Moulin et al. (1998), and the gel diameter was evaluated daily (Figure 3). Differences in the gel contraction speed, which reflects the contractile capacity of the cells, were not observed when cells were cultured from passages 3 to 12.
In summary, fibroblasts isolated from the dermis can be cultured without any major changes for at least 8 passages. After this time, the occurrence of several minor stresses, such as a transient lack of nutrients, can interfere with the phenotype of the cells and, thus, their response to stress in vivo. After grafting, cells placed in an engineered, reconstructed tissue must respond to several stresses, such as an absence of nutrients before revascularization, trauma, or infection, for the entirety of the patient’s life. Thus, cells must be as similar to the original cells as possible. For a skin graft, sub-culturing of fibroblasts for 8 passages, corresponding to at least 25 doubling populations where one isolated cell will generate 8.4 million cells, permits the accumulation of enough cells to reconstruct a large surface area of the dermis.
2.2 Age and sex of the donor
For autologous grafting, the age of the donor should not change. However, many tissue-engineered derma are produced using allogeneic cells. Therefore, the age of the donors’ cells is a valuable parameter to estimate. We have calculated the doubling times for 17 different cell populations isolated from the human dermis at passage 5. Biopsies were taken from 20- to 64-year-old donors. Variations in the doubling time were not detected with donor age. In our experimental conditions, the doubling time mean of the fibroblasts was 47.2 ± 7.5 hours (Figure 4).
A comparison of cell populations from female and male donors of similar age and biopsy location did not reveal a statistically different doubling time (Student’s t-test, p=0.63, N=3 for each category) (data not shown).

2.3 Location of the biopsy
The importance of the location of the biopsy at the origin of the fibroblasts in modulating in vitro cellular phenotypes has been addressed with mixed results (Chang et al., 2002; Chipev and Simon, 2002; Falanga et al., 1991). We did not find a statistical difference in the doubling time of fibroblasts from different biopsy locations, including the forearm, scalp, abdomen, and breast (Figure 5).

One of the most important properties of fibroblasts is to secrete extracellular matrix to create the dermis. To evaluate this parameter, we used the self-assembly approach developed at the LOEX (Michel et al., 1999). Fibroblasts that are cultured for 4 weeks in the presence of ascorbate secrete and remodel extracellular proteins, a measure of the matrix remodeling capacity of the cells (Bellemare et al., 2005). A statistical difference in the thickness of the reconstructed dermis was observed for the various biopsy locations tested. When cells were isolated from the scalp or abdomen, the dermis was thicker than when fibroblasts were isolated from the breast or forearm (Figure 6). However, the thickness of the dermis was not dependent on the age of the patient (data not shown). Because the biopsy site may dictate the quality of the reconstructed dermis and, thus, the viability of its graft, the need for accurately choosing the biopsy site from which to collect cells to reconstruct a tissue is crucial.
Fig. 6. The thickness of the dermis reconstructed using the self-assembly approach with fibroblasts isolated from different location of the body. Student-Newman-Keul multiple range test: *: p<0.05

3. Capillary network

The graft of thick tissues is always a challenge due to the absence of a capillary network, which impedes nourishment of the tissue during the first days after grafting. Malnourishment is often responsible for the increase in the percentage of rejected grafts observed with these types of tissues. Different approaches are currently used to improve skin substitute vascularization before or after transplantation. The addition of growth factors, including VEGF and FGF2, via absorption or incorporation into scaffolds has been shown to trigger a localized and sustained delivery that promotes vascularization (Bouhadir and Mooney, 2001). Transplanted cells can also be genetically modified to produce angiogenic proteins that promote better and faster vascularization (Supp et al., 2000). Forming a capillary network into the tissues before grafting has been reported as an effective method to bypass this problem. Of several described techniques, seeding endothelial cells in biomaterial or on a dermal sheet that is then superimposed has been used most often (Black et al., 1998).

3.1 Isolation of human capillary endothelial cells

The isolation of the needed capillary cells can be performed from the same small tissue biopsy (less than 1cm²) used to isolate the keratinocytes and the fibroblasts, that allows for the reconstitution of an autologous skin with a differentiated epithelium and a vascularized dermis.

The skin biopsy was cut into 0.5 cm² pieces and transferred into a thermolysin solution (500µg/ml) in HEPES buffer (Germain et al., 1993) then incubated at 4°C overnight. The epidermis was gently peeled from the dermis with forceps and constantly agitated in a trypsin/EDTA (Valeant Canada Limited) solution for 15 min. The epidermal cells were
centrifuged, and plated in the presence of irradiated 3T3 feeder layer cells as previously described (Moulin et al., 2000).

![Microvascular endothelial cells were isolated from human dermis; (left) phase contrast and (right) von Willebrand factor immunostaining (bar: 200µm)](image)

The capillaries were extruded by pressing the dermal layer and were plated on gelatin-coated tissue culture flasks with EGM-2 medium (Cambrex Bio Science Baltimore, Inc., Baltimore, MD). After 24h, the medium was replaced to eliminate non-adherent cells and the cells were cultured for one week. The cells were removed from the culture flask by trypsin/EDTA and processed with CD31 antibody-coupled magnetic bead (Dynabeads, Invitrogen) for 30 min, allowing for further purification of the cells (Richard et al., 1998). Immunostaining was performed to validate the presence of the von Willebrand factor, a specific marker of endothelial cells, in the whole population (Figure 7). After the extrusion of the capillaries, the dermis was incubated in a collagenase H (0.125U/ml) solution for 4-5 hours at 37°C then plated and cultured as in (Moulin et al., 2001).

3.2 Reconstruction of a tissue-engineered endothelialized skin

The self-assembly approach is a tissue engineering method based on the in vitro production of mesenchymal sheets devoid of biomaterial or exogenous matrix proteins that were previously described for the production of human skin and blood vessels (L’Heureux et al., 1998; Michel et al., 1999). Dermal fibroblasts are cultured on petri dishes with the fibroblast medium supplemented with ascorbic acid (50µg/ml). Cells secrete and remodel matrix that form a manipulable sheet after 4 weeks. Endothelial cells are then seeded on the sheet and cultured for an additional week in EGM-2 medium with ascorbic acid. Two of these sheets are then superimposed to form an endothelialized tissue-engineered dermal substitute. Subsequently, keratinocytes can then be added onto the dermis to form an epidermis after differentiation at the air-liquid interface (Rochon et al., 2010) (Figure 8).

We have evaluated the formation of the capillary structure with time after endothelial cell seeding on dermal sheets and we observed an increase of capillary like structure over time. The formation was evaluated using CD31, a protein that localizes to junctions between endothelial cells. The formation of capillary-like structures reached a maximum at 21 days and remained stable until at least day 28 (Figures 9 and 10).

This endothelialized tissue-engineered skin has been grafted onto mice. Complete re-vascularization of non-vascularized skin substitutes usually takes 14 days. Authors have
demonstrate that endothelial network inosculates with the host’s own vascular system within 4 days allowing to a quick revasculization of the tissue (Gibot et al., 2010). Furthermore, an active invasion of the dermis by the sprouting of host capillaries from the wound bed has been detected. The authors conclude that the microvascular network constructed in vitro is an interesting method to quickly vascularize a thick tissue. This finding will facilitate the graft take of thick engineered-tissues that, currently, die due to a lack of oxygen and nutriments.

Fig. 8. Endothelialized tissue-engineered skin performed with three cell populations (i.e., keratinocytes, fibroblasts and endothelial cells) isolated from the same skin biopsy (A) Masson’s Trichrome staining. Arrows indicate capillary-like structures. (B) Higher magnification of a capillary-like structure. (C) Transversal section of CD31-immunolabeled endothelialized tissue-engineered skin (dotted line: basal membrane between epidermis (e) and dermis (d)). (D) Bird’s-eye view of CD-31-labeled endothelialized tissue-engineered dermis. Bar: 50µm for A, C and D and 7µm for B

4. Other possible improvements

The skin is a complex organ that cannot be pared down to a bilayer tissue comprised simply of an epidermis and a dermis. The third part of the skin, the hypodermis, is often ignored; however, it is crucial in controlling the temperature and nutriment storage, as well as secreting important hormones such as leptin that are important during healing (Frank et al., 2000). The addition of this skin moiety to a tissue-engineered reconstructed skin should
increase the functions of the grafted skin. Researchers can now reconstruct an autologous hypodermis using human adipose-derived stem/stromal cells and incorporate it to a reconstructed skin (Trottier et al., 2008).

Fig. 9. Immunohistochemistry with CD31 antibodies on endothelialized-tissues after 7 (A), 14 (B), 21 (C) and 28 (D) days of culture. Bar: 200µm

Fig. 10. The percent surface area of capillary-like structure evaluated from pictures of immunohistostaining with CD31-antibodies as in Figure 9

The absence of sebaceous and sweat glands in the reconstructed tissue is a recurrent problem for patients with large burn areas that have been grafted with tissue-engineered skin. This absence induces important thermoregulation problems and causes a dry skin that
needs to be constantly moisturized. The addition of these glands to a tissue-engineered skin is not trivial but recent results offer promise (Huang et al., 2010).

Hair follicle regeneration was thought to be impossible during adult life. Wound stimulus and wnt pathway activation have been recently shown to trigger de novo hair follicle formation from epidermal stem cells (Ito et al., 2007). This observation suggests that tissue-engineered skin with normal hair follicles is plausible.

If added, these complex skin structures can improve the functionality of the tissue. Furthermore, several other cell populations have also been added such as melanocytes, improving UV protection of the skin (Scuderi et al., 2008); Langerhans and dendritic cells, immunological cells present in the skin (Bechetoille et al., 2007) or nerves to improve skin sensation (Blais et al., 2009). These additions, if possible in laboratories for experiments, have now to be added in tissue-engineered skin for routine use as human skin replacement on patient.

5. Conclusion

The possibilities of the tissue engineering method are wide and an increase in the functionality of the grafted tissues will enhance their use. The skin has been the first tissue to be reconstructed and used in clinics to cure patients including large burn victims and for ulcer therapy. Techniques that have been developed for the skin reconstitution are currently used to reconstitute other tissues with more complex structures. However, numerous improvements are needed before obtaining an identical tissue.

6. Acknowledgments

The authors are supported by the Canadian Institutes of Health Research, Fonds de la Recherche en Santé du Québec (FRSQ), Fondation du CHA-Hôpital Enfant-Jesus/Saint-Sacrement and Réseau ThéCell, FRSQ.

7. References

Mesenchymal Stem Cells for Cell Therapy and Tissue Regeneration in Urology

Yingai Shi¹,² and Yuanyuan Zhang²

¹Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun
²Wake Forest University, Institute for Regenerative Medicine (WFIRM), Winston-Salem, North Carolina
¹China
²U.S.A.

1. Introduction

Adult stem cells are defined as clonogenic, self-renewing progenitor cells that reside in adult tissues and can generate one or more specialized types of cells required for the function of that tissue. The majority of adult tissues contain their own stem/progenitor cells that are capable of maintaining, generating, and replacing terminally differentiated cells within the tissue in response to physiologic cell turnover or tissue damage resulting from injury. Stem cell populations in the bone marrow were the first adult stem cell populations to be described, but in recent years adult stem populations have been demonstrated in the brain,¹ skin,³ and muscle⁴, hair follicle⁵ and the gastrointestinal tract. Adult stem cells, especially hematopoietic stem cells, are the best understood cell type in stem cell biology⁵, yet they remain an area of intense study, as their potential for therapy may be applicable to a myriad of degenerative disorders. These cells are a particularly attractive option for cell therapy and tissue engineering applications because they can be used in autologous therapies, thus avoiding any complications associated with immune rejection.

Research into adult stem cells has progressed slowly in the past, mainly because true stem cells are present in extremely low numbers in adult tissue⁶-⁸, and because adult non-mesenchymal stem cells have been challenging to isolate, expand and maintain in culture. Some cells, such as those of the liver, pancreas and nerve, have very low proliferative capacity in vitro, and the functionality of some cell types is reduced after the cells are cultivated. These issues have limited the use of adult stem cells in tissue engineering and cell therapy research. However, the discovery of native targeted progenitor cells has allowed some of these limitations to be overcome. Native targeted progenitor cells are tissue specific unipotent cells derived from most organs. These cells are already programmed to become a specific cell type, and as with adult stem cells, native progenitor cells can be obtained from the specific organ to be regenerated, expanded, and used in the same patient without rejection, in an autologous manner ⁹-²⁶. By studying the niche in which the progenitor cells reside, as well as by exploring conditions that promote the differentiation of these cells, it has been possible to overcome some of the problems facing cell expansion in vitro. Major advances in cell culture techniques have been made within the past decade, and these techniques make the use of autologous cells possible for clinical application. In this
chapter, we will focus on the use of autologous cells for regeneration and/or repair of the urinary tract.

2. Stem / progenitor cells derived from the genitourinary tract

Bladder

Adult human stem/progenitor cells from urinary tract system have been recently described and characterized. It has been shown experimentally that the bladder neck and trigone area have a higher density of urothelial progenitor cells, and these cells are localized in the basal region. In the past, it was possible to grow urothelial cells in the laboratory setting, but only with limited success. However, several protocols have been developed over the last two decades that have improved urothelial growth and expansion by enhancing culture conditions to support proliferation and differentiation of urothelial progenitor cells. It is now possible to expand a urothelial strain from a single surgical specimen that initially covers a surface area of 1 cm² to one covering a surface area of 4202 m² (the equivalent area of one football field) within 8 weeks. Now, normal human bladder epithelial and muscle cells can be efficiently harvested from surgical material, extensively expanded in culture, and their differentiation characteristics, growth requirements, and other biologic properties can be studied. In addition, human urothelial and muscle cells can attach and form sheets of cells when seeded onto polymer scaffolds. The cell-polymer scaffold can then be implanted for repairing urological tissue defects. Histological analysis indicates that, within the cell-polymer construct, viable cells are able to self assemble back into their respective tissue types, and they retain their native phenotype.

To determine whether these engineered tissues could be implanted in continuity with the urinary tract, large animal models of bladder augmentation were used. Partial cystectomies were performed in dogs and the animals were divided into 2 experimental groups. In one group, the bladder was augmented with a non-seeded bladder-derived collagen matrix, and in the second group, the bladder was augmented with a cell-seeded construct. The bladders augmented with seeded matrices demonstrated a 100% increase in capacity compared with bladders augmented with cell-free matrices, which only generated a 30% increase in capacity.

It has been known for a number of years that the bladder is able to regenerate generously over cell-free scaffolds, because urothelium has a high reparative capacity. However, bladder muscle tissue is less likely to regenerate in the same fashion as urothelium, which leads to contracture or resorption of the graft. In addition, the inflammatory response toward the materials used to form the graft matrix may contribute to the resorption of cell-free grafts as well. The dog study demonstrated a major difference between matrices used with autologous cells (tissue-engineered matrices) and those used without cells. The matrices seeded with cells prior to use in bladder augmentation retained most of their implanted diameter, as opposed to the matrices implanted without cells, in which graft contraction and shrinkage occurred. As in previous studies, the histomorphology demonstrated a lack of muscle cells and a more aggressive inflammatory reaction in the unseeded matrices.

The results of initial studies showed that the creation of tissue engineered bladders using autologous urothelial and smooth muscle cells could be achieved; however, it could not be determined whether the improvement in functional parameters noted was due to the implanted segment or to the remaining native bladder tissue. To better address the
functional parameters of tissue-engineered bladders, additional animal model of subtotal cystectomy with subsequent replacement with a tissue-engineered organ was created25. In this model cystectomy-only and non-seeded controls maintained average capacities of 22\% and 46\% of preoperative values, respectively. An average bladder capacity of 95\% of the original precystectomy volume was achieved with the cell-seeded tissue engineered bladder replacements. These findings were confirmed radiographically. The subtotal cystectomy reservoirs that were not reconstructed and the reservoirs reconstructed with unseeded grafts showed a marked decrease in bladder compliance (10\% and 42\% total compliance, respectively). In contrast, the compliance of the tissue-engineered bladders showed almost no difference from preoperative values (106\%). Histologically, the non-seeded scaffolds resulted in a structure composed of normal urothelial cells with a thickened fibrotic submucosa and a thin layer of muscle fibers. The retrieved tissue-engineered bladders showed a normal cellular organization, consisting of a trilayer of urothelium, submucosa, and muscle. Immunocytochemical analyses confirmed the muscle and urothelial phenotypes, and indicated the presence of neural structures25. These studies, performed with polyglocolic acid based-scaffolds, have been repeated by other investigators, showing similar results in large numbers of animals long-term42, 43. Subsequent studies indicated that biodegradable scaffolds seeded with cells can be used without concerns for local or systemic toxicity44.

Bladder tissue engineered using autologous cells has been used clinically. A small clinical study was conducted starting in 1998. Seven patients were treated using a collagen scaffold seeded with cells taken from biopsies of their own bladders, either with or without omental coverage, or a combined PGA-collagen scaffold seeded with cells and omental coverage. The patients reconstructed with the engineered bladder tissue created with the PGA-collagen cell-seeded scaffolds with omental coverage showed increased compliance, decreased end-filling pressures, increased capacities and longer dry periods over time45. It is clear from this small study that the engineered bladders continued their improvement with time, suggesting continued development in vivo. Although the experience is promising, it is just a start and the technology is not yet ready for wide dissemination, as further experimental and clinical studies are required.

Kidney

Kidney has long been considered an organ that is incapable of true regeneration. Furthermore, the question of whether or not the kidney contains adult stem cells remains controversial. However, increasing evidence of a regenerative response in the kidney has been observed following the injury resulting from both toxic and ischemic insults. These observations include evidence of renal progenitors of specific cell types involved in the formation of new renal tubular cells and the recovery of renal function recovery after ischemic injury. The presence of injured or dead cells following ischemia causes denudation of the tubular basement membrane, and sloughed cells and cellular debris fills tubular lumens. The kidney responds to the ischemic injury with a prompt regenerative response, resulting in regenerating tubules and improving kidney function. Although they remain elusive, the cells participating in renal regeneration are likely from pools of both exogenous and endogenous stem cells. The exogenous stem cells are probably largely derived from bone marrow, and may be both hematopoietic and mesenchymal stem cells. In some studies, these cells appear to home to damaged sites in the injured kidney and form tubular epithelial cells following acute renal injury46-49. These MSC might also produce growth factors such as IGF-1 to promote renal repair50. The endogenous stem cells are resident
kidney stem cells found in the renal tubules and the papilla51, 52. They are inactivated under physiological conditions. These stem cells possess the capacity to give rise renal tubule cells following injury repair 53, 54. A recent study showed that repopulation of damaged renal tubules occurs primarily from proliferation of tubular epithelial cells and resident renal-specific stem cells, with some contribution of paracrine factors from bone marrow-derived mesenchymal stem cells 55-56.

Testis

Primordial germ cells (PGC) are the embryonic progenitor cells of the gametes (spermatogonial stem cells and ova). \textit{In vivo}, PGC colonize the gonadal ridge during early embryonic development and are then restricted to producing the gametes. However, if PGC are cultured \textit{in vitro} in the presence of specific growth factors, they are able to form pluripotent embryonic germ cells (EGC) through a process that is relatively similar to that of nuclear reprogramming and generation of induced pluripotent (iPS) cells in the laboratory (discussed later in this review) 57. These cells can contribute to all cellular lineages in chimeric embryos, including the germline. They also form teratomas when injected into immunocompromised animals.

For regenerative medicine purposes, PGC are not ideal, because they are derived from embryos and there are a number of controversial ethical issues surrounding the manipulation of human embryos. However, there has been much interest in isolating and describing spermatogonial stem cells (SSC) in recent years. The presence of SSC, which are derived from PGC in the testis, was originally inferred from the presence of ongoing spermatogenesis in the adult male. Recently, the cells believed to be the actual SSC were isolated from the adult testis of both mice and humans through selection of the markers STRA-8, GPR125, CD49fm, CD133 and others58, 59 60. Interestingly, when SSC from both mice and humans are cultured in specified media containing growth factors known to be required for maintenance of pluripotency of other types of stem cells, such as leukemia inhibitory factor (LIF) and glial cell line-derived neurotrophic factor (GDNF), they appear to convert to an embryonic stem (ES) cell-like state.60 These converted cells have been termed adult germline stem cells (aGSC) and they can differentiate into a number somatic cell types encompassing all three embryonic germ layers when they are exposed to the same conditions used to differentiate ES cells. They also form teratomas when implanted \textit{in vivo}. These results suggest that SSC, which can be obtained through a small testicular biopsy, may be useful for the development of cell-based, autologous organ regeneration strategies. However, more research is required to overcome additional hurdles before this technology can be used clinically. In addition, since autologous regeneration strategies based on SSC would only benefit males, researchers are working to identify and describe similar pluripotent cells that may reside in an ovarian niche for use in females.

Urine

We recently demonstrated that it is possible to isolate and expand stem/progenitor cells from human urine6. Approximately, 0.2\% of cells collected from urine express markers characteristic of mesenchymal stem cells (MSC), can expand extensively in culture, and can differentiate towards multiple bladder cell lineages as identified by the expression of urothelial, smooth muscle, endothelial and interstitial cell markers. We initially referred to these cells as urine progenitor cells. However, our more recent experiments indicated that urine-derived cells can give rise to additional specialized types, including osteocytes,
chondrocytes, and adipocytes. Furthermore, these cells have self-renewal capability consistent with stem cells. There is now sufficient evidence to provisionally designate them as urine-derived stem cells (USC).

Three types of cells exist in urine: differentiated, differentiating and progenitor cells. Most cells in urine are fully differentiated. They do not attach to tissue culture plates. About 0.1% of cells in urine are differentiating cells, which do attach to plates and display the morphology and protein markers of various bladder cell lineages. However, these cells do not expand further after subculture. About 0.2% of the cells in urine have a phenotype consistent with multipotent stem cells. USC are easily cultured, appear genetically stable after a number of passages, and maintain the ability to give rise to more differentiated progeny.

USC comprise an average of about 7 cells/100ml urine (from 5 to 10 cells/100 ml urine). We have shown that, a few days after being placed in a tissue culture well, a single cell forms a cluster of cells which appeared small, compact and uniform. A consistently high yield of cells was achieved from each of these clonal lines. The cells reached confluence in about two weeks when placed in a 3-cm diameter well at passage one. At passage 2, cells were plated in 10 cm culture dishes and a cell number of approximately one million was reached in 3.5 weeks. Finally, in six to seven weeks, the cultures expanded to approximately 100 million cells at passage four. These cells displayed normal exponential cell growth patterns, with a steady increase in cell numbers during a 10-day culture period. The average population doubling time was 31.3 hours in mixed media. These urine-derived cells also showed the ability to differentiate into various cell lineages as described below, and were capable of growing for at least 14 passages in vitro.

Cells from human urine specimens could be consistently cultured long-term using a medium that we originally developed for culture of rat urothelium\(^6\). However, the phenotype of the cultured human urine-derived cells was not that of primary urothelial cells. The primary cultures from urine did not show expression of the cytokeratins (CK7, CK13, and CK19/20), which are characteristic of epithelial cells, nor did the cells express the urothelial-specific protein uroplakin. After growth in medium containing higher levels of epidermal growth factor (EGF), the cells were induced efficiently to express the cytokeratin proteins and uroplakin\(^6\). However, after growth in myogenic medium, the cultured cells expressed markers consistent with smooth muscle, including alpha-smooth muscle actin (α-SM actin), desmin, calponin, and myosin\(^6\). This led us to conclude that the urine-derived cells were progenitors (initially designated UPC) capable of giving rise to both urothelium and bladder smooth muscle. Furthermore, we found that the cells displayed a surface marker phenotype consistent with mesenchymal stem cells (MSC). Specifically, they expressed CD 44, CD73, CD90, CD105, and CD 146, and they were negative for both hematopoietic markers and endothelial markers including CD45, CD34, and CD31. We concluded that the urine-derived progenitors were at least bipotential for the major bladder cell types. This result was surprising, because it was generally believed that muscle and epithelial cells in bladder represent separate cell lineages derived from mesoderm and endoderm, respectively. We have recently observed that the urine-derived cells express markers typical of mesenchymal stem cells (MSC) and pericytes, and that they can differentiate to yield the characteristic cell lineages obtained from MSC, namely, osteocytes, adipocytes and chondrocytes \(^6\).

In our recent study, USC clones could be obtained from 85% of urine sample tested. Fresh urine gave the highest rate of colony formation (67%) and urine stored at 4° C the lowest
(30%). Urine from volunteers aged 13-40 gave the highest rate of clone recovery. Catheterization significantly enhanced the number of USC in urine compared to spontaneously voided urine, possibly because catheterization resulted in cells being scraped off the inner bladder wall. Collecting triple urine samples increased the rate of clone formation.

There are many potential advantages to using USC as a cell source for urological tissue engineering. First, cells can be easily harvested and grown in culture. USC do not require enzyme digestion or culture on a layer of feeder cells to support cell growth. Second, since invasive surgical biopsy procedures are not necessary to harvest cells from urine, patient morbidity and potential complications, such as urethral or bladder trauma and urinary tract infections, are avoided. As USC are autologous somatic cells, no ethical issues are involved in their use for tissue reconstruction, and no immune reaction to engineered implants should occur.

The quality of cells obtained from urine is similar to that of the biopsy-derived cells described above. When differentiated, USC express all proteins characteristic of the various bladder cell lineages. Karyotype analysis has demonstrated that these cells are genetically stable. Importantly, there is a major cost advantage to using USC - it costs about $50 to obtain cells from urine, versus about $5,000 to isolate cells from a biopsy procedure. About 1.4 x10⁹ urothelial and smooth muscle cells (SMC) are required for bladder tissue regeneration. We estimate that 3-4 urine samples (about 40-45 USC/600 ml urine) expanded for 4-5 weeks would yield a sufficient quantity of low passage, healthy cells for clinical tissue engineering applications. This time frame is comparable to that required for expansion from a tissue biopsy (7-8 weeks). USC and the cells obtained through urological tissue biopsies come from the same urinary tract systems and have similar biological features. Therefore, collecting cells from urine could be an attractive alternative to the standard urological tissue biopsies currently used in cell therapy and tissue engineering.

3. Stem/progenitor cells derived from non-urological tissues

Despite the convenience of using differentiated cells in tissue engineering applications, these cells have several shortcomings. These cells have a limited ability to grow in culture and they tend to dedifferentiate in vitro, which may lead to insufficient numbers of cells. In addition, autologous bladder cells cannot be taken from patients with urinary tract malignancies. One solution to these problems is to prepare engineered tissues using stem cells from various sources. These types of stem/progenitor cells from non-urological tissue have been studied as cell sources for bladder regeneration and cell therapy for stress urinary incontinence.

Mesenchymal stem cells

Mesenchymal stem cells (MSC), isolated from bone marrow, skeletal muscle, and adipose tissue, possess the capacity to differentiate into cells of connective tissue lineages, including muscle. Isolation and characterization of MSC, and control of their myogenic differentiation derived from both pre-clinical and clinical studies have attracted attention to their potential use in urological regenerative medicine and tissue engineering. Currently, the most effectively characterized types of multipotent stem cells are from bone marrow. Bone marrow stem cells (BMSC) have been shown to differentiate into specialized cells, including hepatocytes, neural cells, and mainly mesodermal derivatives such as bone, cartilage, cardiac muscles, skeletal muscle, and fat. If BMSC are placed on a proper
bio-degradable scaffold and implanted, they can act as anti-fibrotic, angiogenic, anti-apoptotic, and mitotic agents. Recently, BMSC were evaluated as an alternative cell type for use in replacement of bladder SMC when native bladder muscle tissue is unavailable. The potential of BMSC to differentiate into cells with bladder SMC characteristics was assessed in vitro and in different animal models. Kanematsu et al. showed that in vitro, both supernatants from cultured rat bladder cells (conditioned media) or media containing TGF-β and VEGF induced bone marrow cells to adopt a SMC phenotype. Recently, we have investigated the impacts of soluble growth factors, bladder extracellular matrix (ECM), and 3D dynamic culture on cell proliferation and differentiation of human BMSC into smooth muscle cells (SMC). Myogenic growth factors (PDGF-BB and TGF-β1) alone, or combined either with bladder ECM or dynamic cultures, induced BMSC to express smooth muscle specific genes and proteins. Either ECM or the dynamic culture alone promoted cell proliferation but did not induce myogenic differentiation of BMSC. A highly porous nanofibrous poly-L-lactic acid (PLLA) scaffold provided a 3D structure for maximizing the cell-matrix penetration, maintained myogenic differentiation of the induced BMSC, and promoted tissue remolding with rich capillary formation in vivo. This study demonstrates that myogenic-differentiated BMSC seeded on a nanofibrous PLLA scaffold can be used for cell-based tissue engineering for bladder cancer patients requiring cystoplasty.

In order to test this in vivo, bone marrow cells expressing green fluorescent protein were transplanted into lethally irradiated rats. Eight weeks following transplantation, bladder domes were replaced with acellular matrix grafts. Two weeks after the graft procedure, GFP expression in the matrices indicated that the transplanted marrow cells had repopulated the graft. By 12 weeks, these cells reconstituted the smooth muscle layer, with native SMC also infiltrating the graft. In another rat study, rapid regeneration of bladder SMC and urothelium occurred on BMSC seeded collagen matrices, whereas fibrotic changes were observed in the non-seeded matrix group 3 months after bladder augmentation. In a large animal study, BMSC proliferated at the same rate as primary cultured bladder SMC in vitro, and they had a similar histological appearance and contractile phenotype as primary cultured bladder SMC. BMSC had a significant contractile response to calcium-ionophore in vitro, and this response was similar to that seen in bladder SMC but markedly different from fibroblasts. Immunohistochemical staining and Western blotting indicated that BMSC expressed α-smooth muscle actin, but did not express desmin or myosin. In vivo, small intestinal submucosa (SIS) grafts seeded with BMSC developed solid smooth-muscle bundle formations throughout the grafts, as did bladder cell-seeded SIS grafts. However, bladder tissue regeneration did not occur in animals that received cell-free scaffolding. These results indicate that BMSC may provide an alternative cell source for bladder tissue engineering. This is relevant for patients with bladder malignancies who require bladder augmentation or replacement but do not have enough normal, non-malignant bladder cells to use in tissue engineering applications.

Other MSC such as skeletal muscle-derived progenitor cells and adipose stem cells have been investigated as potential candidates for cell-based tissue engineering and injection therapy stress urinary incontinence (SUI), and these studies are further described in Section 5.

Induced pluripotent stem cells

iPS cells are a type of pluripotent stem cell that is artificially derived from a patient’s own somatic cells (a non-pluripotent cell) by inducing a "forced" expression of certain genes. iPS
cells were first produced in 2006 from mouse cells and then in 2007 from human cells. iPS cells are typically derived by transfecting stem cell-associated genes into non-pluripotent cells, such as adult fibroblasts. Transfection is typically achieved through viral vectors, such as retroviruses. Transfected genes include the master transcriptional regulators Oct-3/4 (Pouf51) and Sox2, although it is suggested that other genes may enhance the efficiency of induction. After 3–4 weeks, small numbers of transfected cells begin to become morphologically and biochemically similar to pluripotent stem cells, and these cells are typically isolated through morphological selection or through a reporter gene and/or antibiotic selection. This has been cited as an important advancement in stem cell research, as it may allow researchers to obtain pluripotent stem cells, which are important in research and potentially have therapeutic uses in urology, without the controversial use of embryos.

iPS cells are believed to be similar to natural pluripotent stem cells, such as embryonic stem (ES) cells in many respects, including expression of certain stem cell genes and proteins, chromatin methylation patterns, doubling time, embryoid body formation, teratoma formation, viable chimera formation, potency and differentiability, but the full extent of their relation to natural pluripotent stem cells is still being assessed. However, depending on the methods used, reprogramming of adult cells to obtain iPS cells may pose significant risks that currently limit the use of this technique in human therapy. For example, if viruses are used to genetically alter the cells, expression of oncogenes may potentially be triggered. In February 2008, a report published in the journal Cell announced the discovery of a technique that removed the need for oncogenes such as c-myc in induction of pluripotency, thereby increasing the potential use of iPS cells in human diseases. Even more recently, in April 2009, Sheng Ding in La Jolla, California, showed that the generation of iPS cells was possible without any genetic alteration of the adult cell. Repeated treatment of the cells with certain proteins channeled into the cells via poly-arginine anchors was sufficient to induce pluripotency. The cells generated by this process are known as protein-induced pluripotent stem cells (piPS cells).

Human Amniotic Fluid Stem Cells

Human amniotic fluid cells are commonly used clinically as a diagnostic tool for the prenatal diagnosis of fetal genetic anomalies. Recently, increasing evidence demonstrated that fetal-derived stem cells can be isolated from amniotic fluid. These cells represent a novel class of pluripotent stem cells with intermediate characteristics between embryonic and adult stem cells, as they are capable of giving rise to lineages representative of all three germ layers but do not form teratomas when implanted in vivo. These features, in addition to the absence of ethical concerns about their use, indicate that amniotic fluid stem (AFS) cells might be a promising cell source for tissue engineering and stem cell therapy. Perin et al. have recently reported that AFS cells may be useful for kidney regeneration. In a series of studies, this group demonstrated that these pluripotent cells are able to differentiate into de novo kidney structures during organogenesis in vitro. Human male amniotic fluid cells were isolated between 12 and 18 weeks of gestation. AFS cells were isolated from these cultures and labeled with green fluorescent protein and Lac-Z protein. Labeled human AFS cells were then microinjected into murine embryonic kidneys (12.5–18 days gestation) and these were maintained in a co-culture system for 10 days. Histological analysis revealed that human AFS cells were able to contribute to the development of elemental kidney structures including renal vesicles, and C- and S-shaped bodies.
Expression of the early kidney markers zona occludens-1, glial-derived neurotrophic factor and claudin were confirmed by RT-PCR. Therefore, it is possible that amniotic fluid stem cells represent a potential cell source for future renal cell therapies.

4. Approaches for inducing myogenic differentiation of stem cells

When stem cells are used as a cell source for urological tissue engineering and regeneration, they can be used three ways: 1) stem cells can be induced to differentiate into the target cells/tissue-like cells in vitro before cell implantation; 2) stem cells are implanted directly into the tissues where repair is needed, and the surrounding cell- and tissue-based signals induce the stem cells to differentiate into the specific cells required for regeneration, and 3) a cell-free scaffold is implanted and recruits the host’s own stem/progenitor cells, which then differentiate into the proper cell type required for tissue repair.

Current research tends to focus largely on the first strategy described above to allow control over the signals that the cells receive so that differentiation into the tissue type required progresses without problems. For this strategy, it is necessary to mimic the physiological conditions that guide stem cells to differentiate into the desired target cells before implantation. For example, several factors have been shown to enhance autologous adult stem cell differentiation into functional SMC, including:

i. Growth factors, such as vessel endothelial growth factor (VEGF), platelet-derived growth factor (PDGF-BB), transforming growth factor-β (TGF-β) and insulin-like growth factor (IGF)104,

ii. Components of the extracellular matrix (ECM). Cellular interactions with the ECM play an important role in cell adhesion, growth, migration, apoptosis and differentiation 105. It consists of compounds such as collagen, laminin 106, and fibronectin. Collagen IV can promote embryonic stem cells to differentiate into stem cell antigen-1-positive (Sca-1+) progenitor cells and SMC107. However, ECM can promote adult cell proliferation or improve the yield of SMC derived from adult MSC, but ECM alone cannot induce adult MSC to differentiate into SMC108, 109. Additionally, culture on a three-dimensional ECM scaffold in a dynamic culture system can improve cell proliferation, maintain cell phenotypes and lead to a more homogenous distribution of cells on the scaffold 110, 111 when compared to 2-D static culture.

iii. In vitro co-culture of fully-differentiated SMC and stem cells appears to improve stem cell differentiation into muscle cells, most likely because the SMC secrete specific factors into the culture medium. Baskin et al demonstrated that mature urothelium can induce urological embryonic tissue or stem cells to differentiate into smooth muscle cells in vivo through epithelial-stromal cell interaction or cell-cell interaction. In contrast, the embryonic tissue failed to differentiate into SMC when urothelium was not present112. Because of this, conditioned medium is commonly used for stem cell differentiation. Conditioned medium is essentially culture medium that is partially used by cells, and it is enriched with cell-derived material including small amounts of growth factors.

iv. The application of cyclic mechanical strain to cell cultures has been demonstrated to increase the expression of smooth muscle cell markers in stem cells113. Periodic stretching occurs in vivo as a part of the natural function of hollow organs; for example, as the bladder fills and empties. Differentiated SMC easily lose their contractile function in static culture once the cells leave the body, but the use of mechanical strain in culture
can prevent this spontaneous loss of phenotype in vitro and maintain SMC functional characteristics.

5. Autologous stem cells for endoscopic therapies

Another exciting area of clinical urologic investigation is the use of various autologous cells to treat vesicoureteral reflux (VUR) and SUI. An increasing number of clinical trials using tissue engineering approaches have been reported (Table 1). All of these clinical applications of urological tissue engineering are based on a series of successful animal experiments.

<table>
<thead>
<tr>
<th>Cell types</th>
<th>Require Tissue biopsy</th>
<th>Highly expandable</th>
<th>Potential applications</th>
<th>Clinical trail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skeleton muscle derived progenitor cells</td>
<td>Yes</td>
<td></td>
<td>Cell therapy for VRU and urinary incontinent, Bladder regeneration</td>
<td>Yes</td>
</tr>
<tr>
<td>Bone marrow stem cells</td>
<td>Yes</td>
<td>Depend on age</td>
<td>Tissue engineered bladder; Cell therapy for VRU; urinary incontinent</td>
<td>Yes</td>
</tr>
<tr>
<td>Adipose stem cells</td>
<td>Yes</td>
<td></td>
<td>Tissue engineered bladder;</td>
<td>Yes</td>
</tr>
<tr>
<td>Urine progenitor cells</td>
<td>No</td>
<td>no depend on age</td>
<td>Tissue engineered urological organs</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 1. Potential use of autologous stem/progenitor cells for urological tissue engineering and cell therapy

Endoscopic therapy offers a simple method for definitive treatment in SUI and VUR. Two types of injectable substances have been investigated. First, natural and synthetic biomaterials that serve as bulking agents, such as silicone, fibrin, bioglass, polyvinyl alcohol foam, alginate gel, a small-intestinal submucosal suspension and Defulx have been used. Currently, injectable therapy based on bulking agents is used for only about two-thirds of patients with SUI, with even lower cure rates. Potential problems of these injectable substances include decreasing volume of the injectable substance over time in vivo, the need for multiple injections to obtain and maintain optimal efficacy, potential antigenicity of the injectable and related allergic reactions, migration of the injected material, and urethral pain both at the time of injection and afterward. The ideal bulking agent should remain efficacious over time and have few side effects, but so far, none of the substances in use have met these criteria for success and the search for a superior injectable therapy for SUI continues.

Cell-based therapy is a promising alternative in urological procedures for VUR and USI. Autologous cells that can be used for this purpose include chondrocytes, adipose-
derived stem cells (ASC) 120-122, BMSC 121, 125, and skeletal muscle derived progenitor cells 85, 124-127. In 1994, Atala et al proposed the use of injectable autologous chondrocytes to correct VUR via endoscopy 12, 128. Using a minipig model, they noted that autologous chondrocytes injected around the ureter to stop reflux did not migrate and the cartilage bead produced by this technique maintained its volume with time. Reflux was corrected in all animals treated endoscopically with autologous chondrocytes. After these successful animal experiments, several clinical trials have begun 115, 119. One study 129 was conducted in a total of 29 children (46 ureters) with grades II to IV reflux. Chondrocytes were harvested from a biopsy of each patient’s ear cartilage and were grown in culture for 6 weeks. Patients then returned to the clinic for transurethral injection of chondrocytes into the bladder trigone to correct reflux. Ultrasound was performed 1 month after this procedure and radionuclide cystography was done 3 months postoperatively to confirm reflux resolution. When reflux persisted, repeat treatment with stored chondrocytes was offered. In this study, a single chondrocyte injection corrected reflux in 26 of the 46 ureters (57%), while secondary injection was successful in 12 of 19 (63%). Overall, reflux was corrected in 38 of the 46 ureters (83%) and in 24 of the 29 patients (83%). There were no significant complications, and transurethral injection of autologous chondrocytes to correct VUR in children appears to be an effective and safe technique. The only limitation of this therapy is the high cost.

The use of myocyte- and stem cell-based injection therapy has also been tested in VUR cases. Primary VUR is a congenital anomaly of the ureter-vesical junction that creates a deficiency of the longitudinal muscle of the intravesical ureter. This leads to an inadequate valvular mechanism and allows urine to flow backward from the bladder to the kidney. Thus, myocyte-based therapies are attractive options for the recovery of this muscle defect at the ureteral orifice.

Autologous progenitor cell-based therapy has also made significant progress in treatment of SUI. This cell therapy could soon become a standard procedure. The objective of this therapy is to improve or cure the sphincter dysfunction via periurethral endoscopic injection. Currently, myoblasts obtained from skeletal muscle biopsies and adipose-derived cells are the most commonly used cells for therapy for SUI. Recently, autologous myoblasts and fibroblasts have been evaluated as a potential injectable therapy for SUI. One group 130-133 has studied a combination therapy consisting of autologous myoblasts injected into the rhabdosphincter and fibroblasts injected into the urethral submucosa. A year follow-up study of 123 women was performed from 2004 to 2005. A cure rate of about 79% with improvements in quality-of-life scores, rhabdosphincter contractility, and urethral closure pressures has been achieved. All patients were continent 1 year after receiving this therapy and maintained their good outcome at further follow-up visits. Ultrasound images before treatment clearly revealed poor periurethral integrity of the sphincteric mechanism; postinjection images revealed a completely normal-appearing urethra.

Rodriguez et al recently reported that adipose-derived stem cells (ASC) have the potential to differentiate into functional SMC 89. ASC expressed a series of contractile proteins, including α-SM actin, desmin, myosin heavy chain, calponin, caldesmon, smoothlin, and SM22 following aspiration from fat tissue and culture in SM differentiation medium. One important advantage of using ASC is that adipose tissue can be harvested in large quantities with minimal morbidity. Autologous fat tissues were used for cell injection therapy for vesicoureteral reflux in a clinical study 134. Two out of 11 patients had a reduction in grade of reflux, including one ureter that ceased refluxing altogether 135. One recent study 136
showed ASC could correct neurogenic erectile dysfunction in rats as effectively as bone marrow stem cells did. More research is underway to determine whether ASC can differentiate into Leydig, Sertoli and male germ cells. The eventual goal of the research is to use ASC to treat male infertility and testosterone deficiency.

6. Conclusions

Current advances in urological tissue engineering and stem cell-based therapy demonstrate that bladder and urethral tissues can be regenerated using autologous cells seeded onto biodegradable scaffolds. VUR and SUI can be corrected with injections of autologous stem cells contained in a hydrogel. However, many issues must be elucidated before these techniques can become widely used in the clinic. For example, the role of donor cells in tissue regeneration remains unclear, and it is not known whether the seeded stem cells proliferate and populate scaffold materials themselves, or if they stimulate to the activation, migration, proliferation, and differentiation of the local progenitor cells to complete the tissue regeneration. Additionally, an approach to promote angiogenesis and to facilitate innervation with a functional network of regenerated nerves will greatly improve tissue regeneration strategies to create a de novo urological organ. (6,015 words)

7. References

Glandular Stem Cells
A New Source for Myocardial Repair?

Norbert W. Guldner¹, Charli Kruse² and Hans - H. Sievers¹

¹Clinic of Cardiac Surgery, University of Lübeck, Germany
²Fraunhofer EBM, Cellular Biotechnology, Lübeck, Germany

1. Introduction

For more than 95% of the patients with end-stage heart failure there is no definitive treatment option up to now (AHA, 2009). This fact is caused by a severe shortage in donor hearts on the one hand and on the other hand by technical and economic limitations of cardiac assist devices and artificial hearts. Thus there is a big need for alternative treatment options. Basically heart failure is due to the inability of adult cardiomyocytes to divide and repair damaged heart muscle. For myocardial regenerative medicine stem cells which show the ability to differentiate into functional cardiomyocytes might be a promising source. Although human embryonic stem cells can differentiate into beating cardiomyocytes (Xu et al., 2002), however the therapeutic use of these cells is not without legal and ethical problems.

Previous studies in animal models have demonstrated the therapeutical potential of intramyocardial injection of adult murine stem cells. In a cell-cell contact dependent manner in mammals, mesenchymal stem cells acquired a cardiomyocyte phenotype (Orlic & Kocher 2001, Kawamoto & Yeh 2003, Wang et al., 2006). Furthermore spontaneously beating cardiomyocytes were derived from isolated cardiomyogenic cell lines of murine bone marrow stromal cells (Makino et al., 1999) adipose tissue stroma cells (Planat-Bernard et al., 2004) and from spermatogonial stem cells from the adult mouse testis (Guan et al., 2006). In human myocardium however, adult stem cells from different origins applied intramyocardially did not show a differentiation into cardiomyocytes (Yoon & Wollert 2005). Thus, the search for an appropriate source of cells being able to differentiate into functional cardiomyocytes in human or to contribute to a contractile myocardial patch is still continuing.

From adult rat pancreatic tissue multipotential stem cells were isolated and differentiated into the endodermal pancreatic and hepatic cells (Zulewski, 2001). Human pancreatic stem cells showed also a differentiation into mesodermal structures, like adipocytes, chondrocytes and osteocytes (Seeberger et al., 2006). Furthermore rat and human pancreatic stem cells gave rise to cellular aggregates containing cell types of all three germ layers (Kruse et al., 2004) including ectodermal lineages also shown in further recent publications (Seaberg et al., 2004; Choi et al., 2004). But up to now neither in animals nor in humans cardiomyocytes were generated from pancreatic stem cells. Due to the clinical need of cardiomyocytes, we investigated the differentiation of human pancreatic stem cell cultures
Regenerative Medicine and Tissue Engineering - Cells and Biomaterials

into cardiomyocytes, a process potentially promoted by co-culture with human myocardial biopsies.

Myocardial regeneration with artificially applied cardiomyocytes is emerging to a promising issue of significant scientific and clinical impact. Nevertheless the source of cells for human cardiomyocyte differentiation especially from adult tissue is still unclear. We hypothesized that human pancreatic stem cells may differentiate into cardiomyocyte-like cells enhanced when co-cultured with myocardial tissue.

2. Harvesting, isolating, culturing

From four patients undergoing surgery after an abdominal injury, pancreatic tissue was obtained with informed consent (ethical accreditation of the Ethics Committees, University Hospital of Lübeck, AZ: 03-065). Stem cells were selected, cultured within fetal calf serum and passaged more than 21 times as described elsewhere (Kruse C et al., 2004). Briefly, the pancreatic tissue was treated with digestion medium containing HEPES-Eagle-medium (pH 7.4), 0.1mM HEPES-buffer (pH 7.6), 70% (v/v) modified Eagle-medium, 0.5% (v/v) Trasylol (Bayer AG, Leverkusen, Germany), 1% (w/v) bovine serum albumin, 2.4 mM CaCl₂ and collagenase (0.63 PZ/mg, Serva, Heidelberg, Germany). After digestion the acini were dissociated, centrifuged and further purified by washing in Dulbecco’s modified Eagle’s medium (DMEM, Gibco, Germany) supplemented with 20% fetal calf serum (FCS). The washing procedure was repeated 5 times. The acini were resuspended in DMEM and cultured at 37°C in a 5% CO₂ humidified atmosphere. After 1-2 days of culture spindle-shaped stem cells were observed on the bottom of the cell culture flask. After reaching confluence pancreatic stem cells were subcultured by trypsinization, counted and reseeded with a density of 2-4 x 10⁵ cells/cm². This procedure was repeated until sufficient cells were available. For differentiation we used cells from passages 4 and 14.

Pancreatic stem cells as a source of cardio-myocytes can be obtained from patients using minimally invasive procedure during laparoscopy. Due to their retroperitoneal topography this cell harvesting might not be as easy as obtaining cells from blood, bone marrow or fatty tissue. Nevertheless current investigations show that stem cells from salivary glands easier accessible than pancreatic tissue might have a comparable potential generating cardiomyocytes. On the other hand, if these pancreatic stem cells could react as a general donor on the basis of a recently postulated immunological compatibility of adult stem cells (Chiu RCJ, 2005; Puissant et. al, 2005) sophisticated harvesting might not be necessary. When cells became confluent in culture dishes netlike clusters could be detected. The cell layer was washed with the less nutritive phosphate buffered saline (PBS) and mechanically lifted partially from the culture bottom with a scraper.

Irrespective of whether adult human pancreatic stem cells were cryo-conserved or freshly isolated, their phenotype built netlike cell clusters in different passages. After development of these netlike cell clusters, changing culture conditions and partial mobilization from the bottom, very few cell clusters showed distinct cellular autonomous contractions with about 20 beats per minute. Contracting regions were then video documented in real time and reproduced in five settings.

3. Co-culture with myocardium

To promote self-differentiation into cardiomyocytes, human pancreatic stem cells were co-cultured with biopsies of human myocardium. This myocardial stimulation practically was
achieved by co-culture of the primary cells with each 5 pieces of myocardium (4x4x4mm) for 2 days. The tissue (left ventricular wall, mitral papillary muscle) was received during heart surgery (ethical accreditation of the Ethics Committees, University hospital of Lübeck, AZ 05-206). Heart muscle pieces were adhered to the bottom of the culture dishes for 3 hours until primary pancreatic stem cells (1x 10^6) were applied. After 48h heart muscle pieces were removed and the stem cells were further cultured as described above. Cells were passaged every time after reaching confluence. Immunocytochemical analyses were performed directly 48 hours after treatment. To investigate the long term effects of differentiation, cells were collected 17 days after treatment for PCR-analyses.

When cells became confluent in culture dishes netlike clusters could be detected. The cell layer was washed with the less nutritive phosphate buffered saline (PBS) and mechanically lifted partially from the culture bottom with a scraper. Contracting regions were then video documented in real time and reproduced in five settings.

To test whether cardio-myocytes grow out of biopsies from heart tissues, we cultured them as described above but without pancreatic stem cells. After two days no outgrowing cells could be detected, thus cell fusion of cardio-myocytes from biopsies with pancreatic stem cells seems very unlikely.

After having been in contact with human myocardium for 48 hours and growing for further 14-40 days in co-culture, cells were partially mobilized from the bottom of the culture flask and treated with a less nutritive culture medium. Many contracting areas (4-6 fold) were found in comparison to the unstimulated cells. However, the structure of a contracting area itself was comparable with that already observed before having been developed spontaneously without contact to myocardium. These autonomous contractions with about 20 beats per minute as well, were found in all five co-cultures investigated.

The number of contracting areas was enhanced by co-cultured human myocardial biopsies. The influence from cardio-myocytes on glandular stem cells could become already demonstrated by an immunocytochemical visualization of sarcomeres (red) like shown in figure1 seeing a clearly detectable gradient from M, where the myocardium was located, to the periphery. This cellular stimulation could also be documented as described as follows.

These findings of the stem cell transformation in contact with myocardium in-vitro may become repeated in-vivo after an intra-myocardial injection.

4. Analysis of co-cultured glandular stem cells

After co-culturing and breeding, the influence of the added myocardium to the glandular stem cells was examined by immunocytochemistry of sarcomere-related myosin, immunocytochemistry of cardiac specific troponin, at the electrone-microscopic level and phenotyped with respect to RNA, protein and cardiomyocyte specificity.

4.1 Immunocytochemistry of sarcomere-related myosin

Both, the stimulated as well as the non stimulated stem cells were seeded on chamber slides and cultured for at least two days before they were fixed with methanol:acetone (7:3) containing 1 g/ml DAPI (Roche, Switzerland) and washed 3 times in PBS. After incubation in 10% normal goat serum at room temperature for 15 min the specimens were incubated with the primary antibody overnight at 4°C in a humid chamber. Primary monoclonal antibody was directed against sarcomere myosin MF 20 (DSHB, USA). After rinsing 3 times with PBS, slides were incubated for 45 minutes at 37°C with Cy3-labelled anti-mouse IgG,
diluted 1:200. Slides were washed 3 times in PBS, covered in Vectashield mounting medium (Vector, USA) and analyzed with a fluorescence microscope (Axioskop Zeiss, Germany). Excluding these detected sarcomeres were released from the biopsy and attached to the stem cells, controls with fibroblasts and endothelial cells were cocultured with myocardium. Within these controls, tested cells were negative for sarcomeres by immunocytochemistry.

Fig. 1. Immunocytochemical visualization of sarcomeres (red) in transformed adult pancreatic stem cells (blue nuclei) which had been co-cultured with human myocardium (M) for two days. They were clearly positive for the tested antibody compared to the untreated pancreatic stem cells. A decreasing gradient of myosin containing cells from M to the periphery is to be seen.

4.2 Immunocytochemistry of cardiac specific troponin I
Stem cells were co-cultured with myocardial biopsies for 48 hours and bred for further 2 to 4 days after removing the myocardium. Thereafter probes were rinsed 2 times with PBS and dried for 24 hours on air by RT and then fixated by pure acetone for 10 minutes and -20°C, rinsed again for 2X5 minutes with tris-buffered saline (TBS) and preincubated with RPMI 1640 (Sigma, USA) with 10% AB serum (Biochrom AG, Germany). Monoclonal antitroponin I antibody (Clone 2d5, Biozal 1:25) was used as the primary antibody for 60 minutes. Secondary antibody administration (rabbit anti-mouse; DAKO, Denmark; 1:25 for 30 minutes) followed by alkaline phosphatase anti-alkaline phosphatase complex incubation (DAKO, Denmark; 1:50, 30 minutes) was repeated for a total of times each. Finally, substrate
incubation (naphthole/neofuchsine) and counterstaining with hemalaun were performed before microscopic evaluation. Additionally an isotype-control was carried out with mouse IgG 1 (DAKO, Denmark) and for further negative control skeletal muscle was stained. Myocardium was used for a positive control. An isotype-control with mouse IgG 1 (DAKO, Denmark) was negative as well. Additional controls applying on skeletal muscles were negative too. As expected, a control on human myocardium showed positive results (data not shown).

Fig. 2. Human pancreatic adult stem cells with immunocytochemical staining of cardiospecific troponin I (left) and after a two day co-culture with human myocardium (right). The existance of cardiospecific troponin I in transformed cells is clearly demonstrated.

4.3 Electron microscopic evaluation
Cells grown on coverslips were fixed with 2.5% glutaraldehyde in 0.1 M cacodylate buffer for 1 h. Postfixation was performed with 1% OsO₄ in 0.1 M cacodylate buffer for 2 h; samples were dehydrated with ethanol and embedded in araldite (Fluka, Switzerland). Ultrathin sections were stained with uranyl acetate and lead citrate (Ultrostainer Carlsberg System, LKB, Sweden) and were examined with a Philips electron microscope EM 400 at 60 kV (Philips, The Netherlands).

Fig. 3. Electron micrographs (magnification 13 000X) four days after a 48-hour contact with biopsies of human myocardium. Myofilaments and structures of less (left) and complete developed intercalated disc (right) are demonstrated.
Electron microscopy (Fig. 3 left) showed differentiated cardiomyocytes containing a number of contractile fibrils. Furthermore, different developmental stages of intercalated discs were observed. While intercalated discs are slightly but clearly recognizable (encircled, Fig. 3 left) in some cells, they are as well differentiated as in mature tissue in others (Fig. 3 right).

4.4 Semiquantitative RT-PCR analysis

Total cellular RNA was isolated using NucleoSpin® RNA II-Kit (Macherey-Nagel, Germany). 0.5 µg of total RNA was reverse transcribed into cDNA using Superscript II Reverse Transcriptase RNase H⁻ (RT, Invitrogen, The Netherlands) and oligo dT-Primers (Invitrogen, The Netherlands) according to the manufacturer’s instructions. The PCR’s were performed in 50 µl reaction volume using Taq DNA Polymerase (MBI Fermentas GmbH, Germany). The reactions were carried out for 38 cycles. Control run of RNA without reverse transcriptions were performed to avoid contamination with genomic DNA and produced no bands. To normalize cDNA concentration in different RT-probes, we measured relative expression of GAPDH as representative for an internal housekeeping gene control.

The expected fragment sizes and optimal PCR annealing temperatures used were as follows: GAPDH, 5’: gagtcaacggagttgctgt, 3’: ggaagatggtgatgggattt (213bp, 58.8°C), troponin T2, 5’: gattctggctgagaggagga, 3’: tggagactttctgtatcgttg (197bp, 62.6°C), α-actin, 5’: gttgtcagccagagacca, 3’: cttctgaccataccacca (154bp, 62.6°C), desmin, 5’: ctgtcctccaccctctgt, 3’: agccccctgttcttcaaccc (250bp, 62.6°C). A purified human heart RNA (Ambion, USA) and a carcinogenic cell line (HEp-2) served as functional controls for PCR-primer. PCR-analyses were carried out in a total of four settings.

![Image of gene expression analysis](image)

Fig. 4. Gene expression analysis with the specific PCR primers for the target genes α-actin, desmin and troponin T2 isoform1 demonstrated a greater increase of muscle cell-specific molecules in co-cultured beating cells (+) than in untreated beating cells (-). Non beating carcinogenic cells did not show any muscle specific marker. As a positive control served human heart cDNA (heart).
To test the long-term effect of differentiation PCR-analyses were performed two weeks after co-culture. The target genes for \(\alpha \)-actin, desmin and troponin T were detected to a somewhat greater extent in pancreatic stem cells cocultured with myocardium as compared to untreated cells (Fig. 4). \(\alpha \)-actin could partially not been amplified, whereas desmin and troponin T showed greater amounts in most of the experiments. It remains unclear why \(\alpha \)-actin is suppressed in some cultures. One explanation could be that the differentiation progression of single cell lines follows different roads. We could find a myocardial differentiation within 14 days, but also a shutdown of genes, e.g. \(\alpha \)-actin, in between. Fig.4 demonstrates typical results of these two possibilities. However, as the differences between co-culture and untreated cells were slightly, the differentiation seemed to abate during time. Probably a permanent stimulus might be necessary to keep the cells in differentiation processes.

5. Homing

Applying stem cell therapy in a failing myocardium, the dimension of an intra-myocardial cell homing is significant. Thus a comparison of the homing potential between glandular (GSCs) and mesenchymal stem cells (MSCs) was performed within the myocardium of a big animal model.

In 6 African Bore Goats the intra- myocardial homing of glandular stem cells and MSCs (CD133+) was evaluated. Glandular stem cells were characterized by red PKH26 respectively green PKH67 (MSCs) makers. Myocardial samples were taken after one resp. three hours (n=3), others were harvested 6 weeks after injection in additional three goats. Frozen tissue slices were generated and examined for the marked cells.

Fig. 5. Through a left lateral thoracotomy and exposure of the left heart a mix of one million of each cell type was injected into three locations of the goat’s myocardium of the left ventricle.
Fig. 6. A mix of GSCs and MSCs (CD133+) are shown before intra-myocardial injection. GSCs are characterized by red PKH26 respectively MSCs by green PKH67 (MSCs) makers. They stay within the cell membrane for about three months. Cell counts were performed after one and three hours and 6 weeks after the intra-myocardial injection.

Red PKH26 markers for glandular stem cells (GSCs) respectively green PKH67 markers for mesenchymal stem cells (MSCs) will enable to detect the intramyocardial injected stem cell within a time frame of six months. Within this time frame it should be possible to visualize connexin antibodies for the detection of gap junctions.

Using a mix of an intra-myocardial injection of GSCs and MSCs, solely in MSCs (green) a significant cell migration into the surrounding myocardium (n=3) was observed. After 6 weeks nearly all GSCs remained within the myocardium while the MSCs disappeared almost completely. Within the frozen myocardial slices >90% of the marked stem cells were identified as GSCs (red) but <10% as green MSCs.
Mainly glandular stem cells (GSCs) stained by red PKH26 were found six weeks after intramyocardial injection in the myocardium (blue) of the Bore Goats (n=3). Due to a >90% homing of GSCs combined with the ability developing cardio-myocyte like cells, glandular stem cells might become a very promising treatment option in the therapy of a failing myocardium.

6. Clinical application

Adult bone marrow derived adult stem cells i.e. mesenchymal stem cells (MSCs) were successfully applied clinically to restore the myocardium solely and in combination with trans-myocardial laser (channels) for myocardial revascularization because MSCs mainly transform into capillaries but not significantly into cardio-myocytes. (Stamm C et al., 2003 and Steinhoff G et al., 2006). Adult glandular stem cells (pancreatic, parotic and submandibular) however are able to form tissue with the distinct ability to generate cell types of all three germ layers (Kruse C et
al., 2004). We showed that mesenchymal cells from this tissue differentiate into cardiomyocytes promoted in co-cultures with human myocardial biopsies (Guldner et al., 2006).

Fig. 7. The concept of a glandular stem cell cardiomypoplasty is designed as a treatment option for end-stage heart failure. It combines an expected regenerative potential of transformed adult glandular stem cells into cardiomyocytes within the myocardium or onto the myocardium and the potential of a hypercapillarized latissimus dorsi muscle (LDM) wrapped around the heart for stem cell nutrition and girdling. Muscle transformation from glandular stem cells into cardiomyocytes is documented. A hypercapillarization (capillary to fiber ratio) of 36% within the LDM was found after an intermittent electrical stimulation over 14 days by an implanted myostimulator delivering a controlled stimulation pattern by a new designed devise (Microstim myostimulator, Germany)
Harvesting pancreatic stem cells may cause severe complications due to pancreatic fistulas accompanied with a peritonitis. Biopsies of the glandula parotis may injure the facialis nerve with facialis paresis. The authors assume minor complications are to expect using the submandibular gland by harvesting cells. An amount of more than 100 mio. stem cells are expected from each submandibular gland, which can become harvested in the same operation injecting them into the myocardium.

Glandular stem cells have the potential transforming into cardio myocytes (Guldner et al., 2006). Furthermore GSCs showed a more than 90% homing in comparison with MSCs after 6 weeks injected in a goat’s myocardium (n=3). Combined with their ability developing cardio-myocyte like cells, glandular stem cells are expected to be superior to MSCs for myocardial repair.

In goats and humans electrical continuous and intermittent stimulation of the latissimus dorsi muscle (LDM) has been shown to enhance capillary density of skeletal muscle tissue likewise in small animals as shown by Hudlicka O et al., 1984; Dawson JM et al., 1989; Mathieu-Costello et al., 1996; and Skorjanc D et al., 1998. Additionally known are data of capillary density in intermittently stimulated human sized animals, correlated with functional data like blood flow at rest and under exercise which were evaluated elsewhere (Guldner et al., 2008). The recent investigations in goats demonstrated a 36% higher capillary to fiber ratio in comparison with the non stimulated control after 14 days of electrical pacing of the in-situ LDM (Guldner et al., 2008). An electrically stimulated and therefore hyper-capillarized latissimus dorsi muscle (LDM) and wrapped around the heart could serve for GSC’s nutrition (Mannion et al., 1992, 1993, 1996; Salmons et al., 1998; Guldner et al. 2008).

A stem cell cardio-myoplasty combines a cellular cardio-myoplasty (Stamm et al., 2003; Steinhoff & Stamm, 2006) with a muscular dynamic cardio-myoplasty (Carpentier & Chachques 1985). The additional elastic girdling from LDM around the heart (Figure 7) reduces left ventricular’s wall tension and therefore reduces the oxygen consumption of the myocardium (Hagège A A et al., 1995).

7. Conclusion

These are first investigations demonstrating the feasibility of generating autonomously contracting cardio-myoocyte-like cells from adult human glandular stem cells and their transformation in contact with myocardium. Injecting them into the myocardium is an in vivo co-culturing. We expect in opposite to the injection of bone marrow derived stem cells, resulting in capillaries, a substantial increase of cardiomyocytes. This mechanism might be helpful because of the inability of adult cardiomyocytes to divide and repair damaged heart muscle.

Harvesting glandular stem cells intra-operatively might become feasible in the same operative procedure as the intramyocardial implantation likewise it has been practiced already with bone-marrow-derived stem cells (Steinhoff & Stamm, 2006). The estimated amount of harvested glandular stem cells from one glandular submandibularis might be many-fold higher than the amount of MSCs applied nowadays clinically. Regarding a superior intra-myocardial homing of GSCs in comparison to MSCs stem cell therapy with GSCs might become an advanced cellular treatment option in the regenerative medicine for end-stage heart failure.
Glandular stem cells might enable intramyocardial injections solely or in combination with a pre-stimulated cardiomyoplasty, a muscle powered cardiac assist procedure with an increased capillary to fiber ratio, which is to perform by adequate electrical stimulation patterns. This muscular indirect myocard revascularisation may not only increase myocardial’ s blood supply supporting the implanted GSCs but will additionally decrease the oxygen consumption by a girdling effect. This is due to a deceases wall tension of the myocardium. Thus glandular stem cells should enable a glandular stem cell cardiomyoplasty which combines an expected regenerative potential of transformed adult glandular stem cells into cardiomyocytes within the myocardium with the potential of a hypercapillarized latissimus dorsi muscle (LDM) wrapped around the heart for stem cell nutrition and girdling.

8. Acknowledgment

The authors thank T. Hardel, P.M. Rumpf, B. Keding, J. KajanE. Klink and E. Theißing for generously culturing cells and performing immunocytochemistry and M Klinger performing the electron microscopy. This study was supported by a grant from the European Union (CellPROM). We thank the Microstim GmbH, Germany for the technical supply and the provision of myostimulators for the hypercapillarization studies.

9. References

American Heart Association, Heart Disease and Stroke Statistics- (2009) Updates, Dallas, Texas
Glandular Stem Cells
A New Source for Myocardial Repair?

Part 3

Biomaterials for Regenerative Medicine
1. Introduction

The extracellular matrix (ECM) is composed of a mixture of glue-like macromolecules in the extracellular spaces which give a tissue its characteristic form and maintains its integrity [Exposito, 2002; Gelse, 2003]. The ECM also regulates a variety of cellular behaviors such as proliferation, differentiation, motion and communication [Kadler, et al., 2007; Tsuchiya, et al., 2007]. Collagens are the most abundant proteins in the animal kingdom and have been highly conserved in evolution [Exposito, 2002; Kadler, et al., 2007]. These proteins constitute one third of the human proteome and contribute three-quarters of dry weight of human skin [Kotch & Raines, 2006]. Increasingly, this family of proteins is gaining attention from scientists in different fields, ranging from biochemistry to tissue engineering.

In the last century, collagen has been studied extensively by researchers from different disciplines including chemistry, physics, medicine and biology. Despite of this intensity, the understanding of many collagen properties is still limited and the number of collagen types or collagen-like proteins (CLP) discovered are increasing continuously. Type I collagen is the most abundant protein in the animal body and located in all ECM of connective tissues like bone, skin, tendon and blood vessels. The primary function of Type I collagen is to give mechanical support for the structural organization of the ECM of connective tissues, therefore giving the tissues their characteristic form and maintaining the cellular integrity in the ECM. Possibly there are still many unknown functions to be found. Type I collagen represents the characteristic structure very well and has the characteristic large domains comprised of peptides with varied length of [Gly-X-Y], where X and Y are generally proline (Pro), repeats with a length about 300 nm and folded into unique triple helix structure as its native form [Prockop, & Kivirikko, 1995]. Every chain from the three polypeptide-chains (\(\alpha_1\)_2(\(\alpha_2\)) form a left-handed helix then fold together to form a right-handed triple helix.
1.1 Self-assembly of collagen Type I and role of proline hydroxylation in collagen aggregation

After the biosynthesis of collagen, it is post-translationally modified by different enzymes, including some modifications (particularly hydroxylation) which are unique to this class of proteins. Enzyme-mediated hydroxylation introduces a hydroxyl (–OH) group into prolyl or lysyl residues, thereby oxidizing them to 4-hydroxyproline (4-Hyp), 3-hydroxyproline (3-Hyp) and hydroxylysine (Hyl). The function of 4-Hyp is generally accepted to stabilize the collagen triple helix structure, while the function of 3-Hyp is still not clearly known [Jenkins, et al., 2003; Berg & Prockop, 1973; Wick, et al., 1978]. Hydroxyproline can be determined by chemical methods, as described by [Jamall et al., 1981]. Whereas many studies have suggested that the 4-Hyps enhance the stability of collagen strongly, in contrast, 3-Hyp has been suggested to exhibit a destabilizing function [Jenkins, et al., 2003].

Since collagen contains very few aliphatic or aromatic residues, it is unlikely that the assembly of the collagen chains is entropy-mediated as a consequence of the hydrophobic association of amino acids. In fact, extensive calorimetric studies by Privalov in the early 1980s (see [Privalov, 1982]) showed that the thermodynamic behavior of Type I collagen melting was exceptional. In particular, the melting transition was exceptionally sharp compared with those observed for other proteins, and the magnitude of the specific heat change for the melting transition was also significantly larger than for most proteins. Privalov [Privalov, 1982] also concluded, from a limited data set, that 4–Hyp at the third position of the characteristic amino acid triplet made the largest contribution to Hyp-mediated collagen stabilization. Finally, Privalov concluded that the every large enthalpy change upon collagen denaturation was due to extensive hydrogen bonding, and that the evidence strongly favored one of the original Ramachandran models [Ramachandran et al., 1973], where an additional water bridge can be formed between Hyp at the third position of the triplet and a strongly-bound water molecule. This unusual bonding leads to an extensive hydrogen-bonding network, which strongly stabilizes the structure. From the thermodynamic data, and also the exceptionally high value (determined experimentally) for the strongly bound water, about 7-8 water molecules must be tightly bound per collagen triplet. Brodsky and Persikov [Brodsky, & Persikov, 2005] have also noted that 4-Hyp on the Y position can accept a hydrogen bond from the neighboring Gly, therefore contributing to the conformational stability of the triple helix. Reports also indicate that the Hyp is rarely found to be at the X position thus preventing steric hindrance, which would lead to structural destabilization.

Collagen fibril formation is a self-assembly process that has been investigated in vitro for over four decades. Although it is now clear that the major driving force of the fibril building is from the amino acids residing in the sequence, many studies showed other factors could affect or participate in this process [Kadler, et al., 1986; Ioozo, 1998]. Not only the kinetics of fibril formation but also the diameter of the fibril are controlled by these factors. Studies have shown that proteoglycan is involved in control of the shape and size of Type I collagen in echinoderm. The presence of the protein decorin has also been suggested to influence the fibril fusion [Kadler, et al., 1996]. Although different assembly forms were observed, the aggregation of collagen molecules into unbranched fibrils has been conserved in evolution. The fibril formation in vivo in vertebrates is either bipolar or unipolar, thus the spatial arrangement of the fibrils determine the mechanical and physical properties of the tissues. Fibril-forming collagens including Type I-III, V, XI, XXIV, and XXVII are all similar in size and share the same basic sequence in that they contain a large uninterrupted triple-helical
The collagenous region is flanked by N- and C-terminal non-collagenous domains and both propeptides [Khoshnoodi, et al., 2006]. The propeptides are synthesized first in the cytoplasm as the collagen precursor, procollagen, and then processed to collagen in the extracellular space. At this step, the N- and C-terminal propeptides are cleaved off to yield mature collagen. However, the assembly to triple helical structure begins already in the ER, with collagen single chains forming homo- or heterotrimers, even though the homotrimer of \((\alpha_1)_3\) is the thermodynamically preferred form of Type I collagen assembly. In vitro studies suggest that collagen trimerization is controlled by the non-collagenous (NC) regions [Kuznetsova, et al., 2003; Leikina, et al., 2002]. It has been shown that the homotrimer of \(\alpha_1\) is the default form which assembles in absence of the \(\alpha_2\) chain, whereas the homotrimer of \(\alpha_2\) is only formed if the C-terminal non-collagenous domain is replaced with synthetic peptides. Thus the C-NC-domain of \(\alpha_2\) is recognized as a key domain for the heterotrimer formation. Early studies have also shown that the disulfide bridges in the C-NC domain of \(\alpha_2\) are crucial for heterotrimer assembly and folding [Koivu, 1987]. Energy minimization and molecular dynamic simulations have indicated that the trimerization of both \(\alpha_1\) C-NC domains with the \(\alpha_2\) C-NC domains is a key step in folding, docking and assembly of the three heterotrimer chains [Malone, et al., 2005]. Thus, folding of collagen is initiated from the C-termini by association of \(\alpha_2\) and \((\alpha_1)_2\) and then proceeds sequentially toward the N-termini. Trimerization begins after the interchain disulfide bonds have been formed between \(\alpha_2\) and \((\alpha_1)_2\) C-NC domains.

At the same time, new recognition sites, encoded by the sequence information, allow formation of oligomers and fibril according to the tissue specific requirements [Khoshnoodi, et al., 2006]. These recognition sites determine the enzymatic cleavage sites, connections of collagen molecules, lateral association and interaction with other macromolecules from cells such as integrin and proteoglycans in the ECM. Although the understanding of the mechanisms for the trimerization and self-assembly has been increased significantly in last decades, several features are still open for future studies, e.g. the recognition motif for trimerization, differential regulation of different C-NC domains. These could be very useful for engineering proteins with a superstructure which is more suitable for application as a biomaterial. Furthermore, the understanding of N-NC domain is still limited [Bornstein, 2002]. It is known that the N-NC peptides in procollagen \(\alpha_1\) are involved in numerous processes, including the maturation of collagen and function of Type I collagen. Strangely, however, the deletion of these peptides appears to have no significant phenotype in the mouse. Interestingly, the N-NC domains are cysteine-rich peptides (10 Cys in N-NC of \(\alpha_1\)) and are very well-conserved in almost all known procollagen types and all animals. No other amino acids in the N-NC domains are seen to be conserved so strongly as cysteine. However, the function of the disulfide bonds in this region is still an open question [Bornstein, 2002].

Whether purified collagen can refold to triple-helical structure after the denaturation or unfolding is still unclear. Classical results in the last 40 years have indicated that unfolded collagen cannot assemble to form native triple helix. In these studies, although UV-CD-spectroscopy showed a “significant” positive peak around 225 nm, which is characteristic for triple helix, the electron microscopic images revealed that only misaligned helices were present. Some studies have also shown so-called segment-long-spacing aggregations. This conclusion is supported by the above theory that the C-NC domain is a key regulator for triple helix folding. Surprisingly, all studies so far have indicated that collagen at body temperature (37 °C) is only marginally stable [Privalov, 1982]. For instance, the most
modern studies show RTT Type I collagen to be only about 30% in the folded (fibrillar) state at 37 °C [Privalov, 1982]. Possibly, collagens are a subgroup of the class of “unfolded proteins” which maintain a high degree of conformational flexibility at physiological temperatures. It is also reasonable to suppose that the presence of proteoglycans, glycosylation, heat shock proteins (HSP) and Hyps serve to stabilize the collagen structure. Recent studies have introduced some new results to understand the folding of the collagen which are based upon model peptides. Interestingly, these model peptides are from the collagenous region consisting only of [GPP] repeats. These researchers observed that the Hyp is not essential in stabilization of the collagen model in vitro [Mohs, et al., 2007], which is contradictory to the other studies. The question how collagen molecules are stabilized in vivo is still unresolved.

1.2 Experimental studies using synthetic peptides
There are two major methods to study collagen: using isolated natural collagen [Kadler, et al., 1988] and synthetic model peptide/protein [Kotch & Raines, 2006; Malone, et al., 2005]. Due to its high complexity and high molecular weight, most structural studies have relied on model peptides. Unfortunately, most model peptides studies have focused on the trimer repeats of [Gly-X-Y] and have been mostly limited to [Gly-Pro-Hyp]10 [Mohs, et al., 2002], which is only a short peptide much shorter than natural collagen (=300 nm). Although these model peptides yield much information about the dynamic process of the assembly and triple helix building, the information is just part of that necessary for the understanding of real collagen. Studies have shown that polymerization of these model peptides yield the triple helix form but with a high polydispersity [Kotch & Raines, 2006; Paramonov, et al., 2005]. Furthermore, it must be taken into account, the α1 and α2 chains, containing about 1000 amino acids each, show only 43 and 28 [Gly-Pro-Hyp] (rat Type I collagen, SP:02454 and 02466) repeats, respectively. For this reason, an understanding of the structure of the whole collagen protein is still required [Orgel, et al., 2001]. However, this task is always hampered by the low quality of the collagen derived from conventional procedures, including neutral salt and acetic acid-extraction [Becker, & Timpl, 1972; Miller, et al., 1982; Chandrakasan, et al., 1976; Rajan, et al., 2007] (A comparison of the three procedures is shown in Fig. 1).

1.3 Laboratory scale preparation of highly purified natural Type I collagen, using urea-extraction, and its characterization
In our previous study [Xiong, et al., 2009], we reported a new procedure for obtaining highly purified native like Type I collagen from rat tail tendon with a high yield. This urea-extracted collagen (UC) exhibits a very high “solubility” in water, and thus, using current physicochemical terminology, can be considered to be a sol-gel preparation. The collagen sol-gel can be directly employed as matrix for cell culture without any pre-treatment such as neutralization and gelling. Another new finding we reported concerned the differential hydroxylation pattern of the proline residues at the X positions, and the existence of the differential hydroxylation among the population of collagen α chains. Studies of the population structure of differential hydroxylations, may contribute to an understanding of the tissue-specific differences of Type I collagen as well as the different states of the aging process. Finally, we further characterized the UC. In particular, we improved the ESI-MS/MS technique by means of combinational digestion, resulting in strongly increased sequence coverage from an initial α1-chain (95.8%)/α2-chain (88.1%) coverage to 99% coverage for both
α-chains. Moreover, we developed a new method based on UV-spectroscopy for fast determination of the urea collagen concentration facilitating the application of the UC. A special focus was also directed to understand the reversible self-assembly of the UC, which differed strongly from other collagen isolates. We hypothesized, and later proved experimentally, that the specific carbamylation of the lysine residues in the C-terminus of the α1 chains might play a decisive role.

Fig. 1. Brief chart of major differences between the conventional method and newly established urea-extraction

Summary and comparison of the conventional procedures for collagen purification to urea extraction. In all three procedures, the tail tendons were solubilized into respective solutions within the indicated time frames. After centrifugation, the crude extracts are either stored as final products (neutral/acidic extracted collagen) or further purified (urea-extracted collagen). As the neutral salt extract has some known drawbacks, such as low yield and high contamination with other proteins, as well as often showing significant degradation, in our studies, only AC and UC have been directly compared using either commercially available AC or AC produced in our lab. Yield of the UC is calculated from independent experiments from dry weight of the tendons and isolated purified urea extracted collagen. The yield of the acetic acid procedure has been calculated using the wet weight of the tendons and the dried weight of the acetic collagen [Kadler, et al., 1988; Paramonov, et al., 2005; Becker, & Timpl, 1972; Orgel, et al., 2001; Miller & Gay, 1987]

In 2010, Eyre and coworkers published two articles describing a hypothesis based on the MS/MS studies of different types of collagens from a variety of tissues including rat tail tendon, human skin and bone. Thereby, they identified unusual 3-hydroxylations on the first Pro-residues in the C-terminal [GPP] repeats while the second Pro-residues are
conventionally 4-hydroxylated [Eyre, et al., 2011; Weis, et al., 2010]. Further, they speculated that the 3-Hyp is a tissue-specific feature and can be very important for defining the structure and function as well as assembly status of the Type I collagen in different tissues. This hypothesis is consistent with observations of our previous studies, where we demonstrated an unusual differential hydroxylation pattern in the RTT-Type I collagen. This aspect has not been studied previously in great detail, largely due to the severe limitations of the classical procedures for protein sequence analysis. The new findings are based on more modern and highly discerning mass spectrometric methods, in combination with our newly established UC preparation method. We believe that the combination of these two factors opens the door for a new understanding of this class of protein.

1.4 Goal of this chapter
In the following part, we will show some major results from the urea extraction procedure and the characterization which involved the AFM, SEM, UV-CD-spectroscopy and MS/MS as well as cell culture techniques. We also compare our data to those published recently by other groups.

2. Methods and results

2.1 Comparison of the isolation methods and the yield
Generally, the neutral salt and acetic methods have been established since 1960s. Later many groups modified the methods to improve the quality of the isolated collagens and to reduce the working time [Miller, & Rhodes, 1982; Miller, & Gay, 1987; Bailey, et al., 2011]. Briefly, different tissues such as rat tail tendons, skin from human, porcine and bovine sources are defatted and disinfected to germ free (e.g. with an ethanol wash) before collagen isolation. To increase the solubility of the collagen and avoid potential immunogenicity, the tissue is often treated with pepsin so that the telopeptides can be removed from the collagen molecules. The pre-treated tissues are then incubated in either neutral salt or acetic acid solution for several days to weeks, until a gel-like solution is formed. Finally, the raw extract is clarified by centrifugation to remove the non-soluble tissue residue.

In our newly-established urea-extraction method [Xiong, et al., 2009], we demonstrated that soluble sol-gel collagen can be obtained using a simple two step purification procedure: (1) PBS-washed rat tail tendons are solubilized in 10 M urea solution for up to 16 h at 25 °C (room temperature), and (2) followed by Sepharose 12 gel filtration. The collagen-containing fractions are then dialyzed against water, and the highly purified Type I collagen can be stored in water or concentrated by lyophilization. The most interesting aspect with this method is that, Type I collagen in different formats (solution, sol-gel-like preparation and powder) as well as different concentrations is now readily available. Up to 100 mg/ml UC can be redissolved in water or culture medium as required.

2.2 Alternative digestion of UC for mass spectrometric characterization
In order to increase the sequence coverage of the Type I collagen using the MS/MS technique, we applied an alternative digestion approach whereby the samples were digested separately with CNBr, trypsin and GluC. We also compared the results from the MS/MS analysis with those obtained by amino-acid composition analysis. Lyophilized UC from gel filtration was dissolved in formic acid containing 30% ethanol (v/v) at a collagen concentration of 3 mM, as determined by the ΔA220 value. For the
cleavage of methionine, cyanogen bromide (CNBr) in a 75-fold molar excess of the His amount (which can be estimated from the ΔA_{220} (unpublished data)) was added to the solution in a Reacti-Vial (Pierce) and the reaction was performed for 6 h in the dark at room temperature under stirring. The reaction mix was centrifuged at 16,000 xg for 10 min and then the supernatant was transferred to an Eppendorf tube for drying in a Speed-Vac (Univapo-100H, Unequip GmbH, Germany) for 2 h.

About 0.5 mg/ml of protein was dissolved in a solution containing 8 M urea and 50 mM NH$_4$HCO$_3$, then reduced and alkylated using standard protocols. The sample was diluted and tryptic digestion was carried out at 37 °C overnight. After digestion the solution was adjusted to a pH of 2–3 with concentrated formic acid.

2.3 UV-spectroscopy and UV-CD-spectroscopy

UV-spectra were obtained using a JASCO V-560 spectrometer with a scanning speed of 200 nm/min and slit width of 2 nm. Generally, 2 mm path-length quartz cuvettes were used for the measurements. The whole measurement was performed at 25 °C using a thermostatted cuvette holder.

Further, for determination of the UC concentration, we developed a rapid UV-spectroscopic measurement. As mature Type I collagen lacks the aromatic residues Trp, Phe and Tyr, but contains large amounts of His, we employed this amino acid as a spectroscopic indicator. In control experiments, 1 mM His (Serva) was dissolved in 10 mM sodium phosphate buffer adjusted to either pH 5.5 (protonated, charged form of His) or pH 7.5, and measured in both the presence and absence of 1 M urea. The same measurement was performed using mature Type I collagen dissolved in the same buffers. A comparison of the molar concentration of UC collagen obtained after a dry weight determination following lyophilization with that determined from the His extinction coefficient obtained above, showed the two measurements to be in close agreement.

To study the refolding of the UC after dialysis, UV-CD spectra were acquired with a JASCO J-715 CD spectrometer (scanning speed of 50 nm/min, 2 mm cuvette, slit width 2 nm, averaging over 9 scans). Spectra were obtained in the range of 320 nm to 190 nm. For the spectroscopic measurements, all buffers were degassed under vacuum prior to use.

2.4 Atomic force microscopy (AFM) of the UC-matrix and comparison to native rat tail tendon

The dialyzed urea extract was characterized by AFM. Images were captured using a CP microscope (Park Scientific Instrument Auto probe microscope CP/Veeco) in the tapping mode by using silicon-etched RTESPA cantilevers (Veeco Nanoprobes), which have a nominal tip radius smaller than 10 nm and a spring constant of 20-80 N/m. The drive frequency was set at 200-400 kHz with integral and proportional gains of 0.5-1.5. The scan rate was 1.0 Hz and the scan size was 2-5 and 20-50 μm for collection of heights. All images were flattened and zoomed off-line with ProScan software.

2.5 Cell culture assays for applications as a biomatrix for tissue engineering

The goal here was to characterize the UC collagen and compare its properties with the more conventional AC. The fibroblast 3T3 cell line was grown in Dulbecco’s modified Eagle medium (DMEM) (GIBCO) in tissue culture flask (Greiner) at 37 °C, 5% CO2, until reaching confluence. This DMEM contains 10% fetal calf serum (FCS) (Clonetics), 2 mM L-glutamine,
0.1% gentamicin, 0.45% glucose and 0.1% penicillin-streptomycin. The same amount of UC and AC were dissolved in DMEM (1 mg/ml) and dropped into a 24 well-plate with inserts for expression analysis and into a 6-well plate with cover slips for phenotypical studies by SEM. The collagen solutions were incubated under a sterile bench for 2 h to allow gelling. Then, 1 x 10^4 and 2.5 x 10^4 cells in 100 μl DMEM were dropped onto the collagen surface in the inserts. For the collagen-coated cover slips only 5000 cells were employed. For both studies, the cells were cultivated for 14 days with changes of medium every 2 days. Cell vitality was judged by the live/dead cytotoxicity test. The samples were washed twice in phosphate-buffered saline (PBS) and stained for 60 min with 200 μl calcein/ethidium homodimer-1 solution. Subsequently, the samples were washed in PBS and fixed in 4% glutaraldehyde. To study the difference in cell behavior on different collagens, specific genes were chosen to be compared at a transcriptional level using real-time polymerase chain reactions (RT-PCR). Three culture conditions were compared cells growing on a plastic surface used as reference culture. Cells grew on UC and AC were compared to the reference culture.

3. Results and discussion

3.1 Comparison of the preparation methods for Type I collagen

As mentioned above and shown in Fig. 1, in the conventional isolation procedures, there are several drawbacks that cannot be ignored: (1) the contamination from other tissue proteins such as albumin and other type of collagens; (2) uncontrolled degradation of the collagens during pepsin treatment and the extraction, as the tissue own enzyme cannot be totally removed by washing the tissue prior to the extraction; (3) the acid treatment also causes some partial hydrolysis during the extraction, which is largely uncontrollable (Fig. 2); (4) the longer the tissue is incubated in the acid solution and the more collagen is solubilized, the higher the viscosity of the solution, which reduces the further solubilization of the remaining tissue collagen and complicates further purification steps e.g. chromatography. The last point creates severe limitations for up-scaling of the procedure for industrial high-throughput production; (5) the isolated collagen is normally kept in acidic solution which limits the shelf life and handicaps the delivery and application in the laboratory or hospital. To obviate these difficulties, some sources provide freeze-dried collagen products. However, as mentioned above, the collagen powder cannot be redissolved rapidly, and in the normal case, only part of the dried powder is soluble. Several other problems with the AC, such as the pH adjustment prior to usage in cell culture with medium and buffers, which is also batch-dependent, makes the application of such collagen very time- and labor-consuming. Most importantly, this reduced the reproducibility of the collagen based experiments as indeed, the collagens produced from the neutral salt or acidic procedure are mixture from differentially hydrolyzed/degraded collagen peptides and intact collagen [Miller, et al., 1982; Chandrakasan, et al., 1976; Bailey, et al., 2011; Bann, et al., 2003; Mizuno, et al., 2004; Rajan, et al., 2006]. In Fig. 2, the isolated UC was analyzed by a 4% SDS-PAGE gel and the characteristic bands for α1 and α2 polypeptides are indicated with arrows. During the incubation in 9 M urea several samples were taken after 1 h, 3 h, 5 h, and 24 h respectively to test for degradation. As shown in Fig. 2A, the longer the incubation the more collagen could be dissolved in the 9 M urea. The amounts of the high molecular weight fractions were increased during the incubation. A smear across by the high molecular weight fractions was observed in all samples (Fig. 2A). Even though tendons were incubated
for 2 weeks in 9 M urea solution, no degradation was observed. There was no difference in the SDS-PAGE if the extracted collagen was treated with DTT prior to loading, indicating that the occurrence high molecular weight fractions is not due to the formation of disulfide bridges (Fig. 2B). Furthermore, the UC was treated in 0.5 M acetic acid for 7 days. The collagen was degraded continuously, indicating the obvious advantage of UC-process if compared to the acidic procedures with the regard to the integrity of the isolated collagen.

Fig. 2. Urea-extraction and acetic acid partial degradation of UC.
(A) Extraction of collagen from rat tail tendons. Lanes 1 to 4 were the samples taken at 1h, 3h, 5h and 24h during the incubation with 9 M urea. Arrows numbered from 1 to 10 correspond to bands excised for ESI-MS/MS protein identification. The bands 1 and 2 in lane 1 correspond to the α_1 and α_2 chains of the Type I collagen, respectively. All the protein bands indicated by arrows were identified using ESI-MS/MS and these bands contain only Type I collagen. (B) Tendons were incubated in 9 M urea for 2 weeks. Lane 1 shows the untreated sample (no DTT or heating prior to loading). Lane 2 shows the DTT-reduced and heated (at 100 °C for 5 min) sample. (C) The lyophilized extract from urea extraction was incubated in 0.5 M acetic acid. Lane 1 shows the input sample at the beginning, Lane 2 and 3 are the sample taken after one and two days respectively; Lane 4 is sample after 1 week incubation. The arrows indicate the bands which appeared during the incubation.

In our lab, we have demonstrated that the yield of UC from the starting tissue is about 93%, significantly higher than the value we obtain for AC (compared to a value of about 60%, see [Xiong, et al., 2009] for a more detailed discussion).

3.2 UV-determination of the UC concentration
Surprisingly, a continuing problem is the need for a fast and accurate method for the determination of collagen protein concentration. Due to the low amount of aromatic amino acid residues present in Type I collagen, widely-used protein assays such as the Lowry-Ciocalteau reaction[Lowry, et al., 1951; Peterson, et al., 1977], or UV-Vis determinations at 280 nm, and the Bradford-type determinations [Bradford, 1976], which rely the binding of a chromophore to hydrophobic binding sites (almost not present in collagen), are largely useless in this context. In addition, for these latter methods, the collagen should be highly
purified and strongly diluted to prevent precipitation. This is often achieved by purification using acid extraction, and storing in dilute acid. The acetic acid storage method often limits the accuracy of these protein assays. The most accurate method is dry weight determination, whereby the collagen in solution is directly dried in oven or lyophilized to constant water content then weighed. The disadvantage here is that lyophilization requires long drying times (typically longer than 1 h), which is very inconvenient for routine measurements. Other groups use chemical or immunological reactions, which are based either upon a chemical reaction followed with photometric detection [Shormanov, & Bulatnikov, 2006] or anti-collagen antibodies. In principle, the dry weight methods are the most accurate but time-consuming whereas photometric methods are complicated due to the chemical reaction, which need an optimum condition for detection, and antibody reactions are only accurate when purified monoclonal antibodies are employed. Unfortunately, most commercial antibodies against Type I collagen show high cross-reactivity (up to 10%) to other fibril collagens such as Type III, so that their use in quantitative immunoblotting is often not accurate and also time-consuming.

Histidine (His) is present in a high quantity in collagen molecules. In the course of recent work, we examined the possibility of using UV-VIS spectrum of His to determine collagen protein concentration. His absorption spectroscopy has rarely, if ever, been used to determine protein concentration, as its extinction is much weaker than those of the aromatic amino acids. However, Type I collagen contains large amounts of His and very low amounts of aromatic amino acids. From a total of 30 His residues/mol (pro-α1)2(pro-α2) procollagen (SP: P02454 and P02466, respectively), 13 are located in the “core” collagen sequences (2 in α1 at position 256 and 1099; 9 His in α2 at positions 152, 188, 518, 950, 972, 981, 1031, 1044 and 1076). In contrast to core region, 7 His are found in the pro-α1 propeptides and only 3 His in pro-α2 propeptides region. Of particular interest was whether the His spectrum could be observed in the presence of 1-4 M urea, which is often employed as a solubilizing agent, and whether the ionization state (His has pKₐ 6.0) affects the measurement.

To test our procedure, we employed Type I UC. The final preparation is homogenous and corresponds to the "core" sequences described above, as indicated by mass spectrometry (data not shown). This UC can be dissolved completely in water following urea removal (by dialysis) and lyophilization, and provides an ideal test object for testing the His determination method here. We showed that 1 mM His dissolved in 4 M urea yielded a differential absorbance value at 220 nm (ΔA₂₂₀) of 0.64. 1.3 mg dried collagen was dissolved in 1 ml buffer containing 4 M urea and from this sample 200 µl was added to 2 ml for spectroscopic determination.

We determined the amount of His using UV-spectroscopy. In the α₁ chain contains 2 His residues, whereas the α₂ chain, contains 9 His residues. Assuming an (α₁)₂α₂ stoichiometry, these values imply that a single native mature collagen molecule contains 13 His residues. Using the extinction coefficient at 220 nm, we calculated the predicted concentration of weighed 1.3 mg UC sample (4.6 nmol collagen) to be 1.6 mg (5.6 nmol collagen). Although the 20% error margin is still significant, the method is very accurate compared to those mentioned above. This measurement is also in good agreement with the data from amino acid composition analysis and the ESI-MS/MS data, which identified all the His present in UC. This measurement is highly reproducible and can be used even in presence of different salts and urea. Although amounts of phenylalanine are also very high in Type I collagen (26 in α₁, 22 in α₂), these were not visible in a UV-absorption spectrum, indicating that these phenylalanine residues are most likely modified.
We found out that the His absorption at 220 nm is very useful and reliable for this purpose even in presence of urea at high concentrations (up to 8 M). A full description of the method will be reported elsewhere.

Fig. 3. AFM image comparison of RTT and the UC samples (A-D) are the images taken directly from the lyophilized RTTs without any further purification steps to show the native fibril structure of the RTT in different scales from 20 to 0.4 μm. (E-H) are the correspondent scaled images from the UC samples after dialysis against water without lyophilization. The sol-gel-like UC, showed significant random fibril formation at this stage, which could be seen to be highly similar to native RTT fibrils shown in (E). However, the fibril has another dimension (large diameter) if compared to native RTT. Additionally, the sol-gel UC has a high water content and no fine D-periods structure.

3.3 Discovery of differential hydroxylations of proline residues and its application as identifying feature for collagen

The differential hydroxylation of collagen is a topical subject, which until only recently, has been very difficult to address experimentally. An illuminating example of the use of this phenomenon is illustrated by recent work by Mary Schweitzer and colleagues, reported recently in two seminal Science papers, who have demonstrated that soft tissue, purported to be collagen, can be isolated from fossils which are between 68-80 million years old [Schweitzer, et al., 2007; Schweitzer, et al., 2009]. In both works, Schweitzer and co-workers were able to extract and sequence several small polypeptides from the fossil material, some of which was assigned to arise from collagen. If correct, the Schweitzer work would represent a huge breakthrough in molecular paleontology. However, the first paper, where only 4 small collagen fragments could be isolated from a 68 million year-old Tyranosaurus rex fossil, was heavily criticized. In particular, the mass spectrometric sequence determination was only slightly above the noise level, and at least one of the sequences may have arisen from bacterial contamination (see [Schweitzer, et al., 2009] for a detailed discussion). In the latest paper by Schweitzer and collaborators, however, 8 collagen fragments (six arising from the Type I collagen α1 chain, and two arising from the Type I
collagen α2 chain), extracted from soft tissue arising from an 80 million year-old hadrosaur (Brachylophosaurus canadiensis) fossil, could be obtained and sequenced with a high level of precision. In this work, significant effort was taken to minimize contamination problems, redressing many of the criticisms of the T. rex work. Furthermore, in an impressive technical *tour de force*, Schweitzer and colleagues were able to determine the hydroxylation profile of the isolated polypeptides, confirming the assignments by comparison to synthetic hydroxylated polypeptides.

However, an unsatisfying aspect of the B. canadiensis work is the exclusive reliance upon synthetic polypeptides. The confirmation of hydroxylated amino acids at the same homologous positions of a modern-day native collagen would support the B.canadiensis assignments significantly. So far, this has been difficult to perform, since the databases contain only fragmentary sequence information, much of which is rather old and based upon the contiguous assembly of CNBr fragments sequenced by Edman analysis. Usually, Edman analysis does not provide easy and unambiguous access to peptide hydroxylation data.

Recently, we have published the first (to our knowledge) almost complete tandem mass spectrometric (MS/MS) analysis of the hydroxylation profile of a native (rat) collagen I molecule [Xiong, et al., 2009]. Our present (improved since [Xiong, et al., 2009]) coverage for the α1 and α2 chains is 99.2% and 89.8%, respectively (Fig. 1a, for methods see [Xiong, et al., 2009]). Given the high precision of our data, we thought it might be interesting to compare it to the hydroxylation assignments of the B. canadiensis Type I collagen polypeptides. A BLASTP analysis of the B. canadiensis collagen Type I-derived polypeptides against those of the full-length rat α1 and α2 polypeptides yielded a single unambiguous homology in all cases (Fig. 4b). For five of the six B. canadiensis α1-derived polypeptides the hydroxylation assignment is essentially identical to that found for rat tail-derived α1 polypeptide, as determined by MS/MS (Fig. 4b). For the sixth polypeptide the hydroxylated proline residue in the rat sequence has been replaced by an isoleucine in the B. canadiensis sequence (Fig. 4b). Interestingly, and in stark contrast to the α1 polypeptides, one of the two α2-derived polypeptides from B. canadiensis does not show the same hydroxylation pattern as in the rat α2 sequence, since the hydroxylable proline in the rat sequence has been replaced by alanine in the B. canadiensis sequence (Fig. 4b, lower). Nevertheless, for this B. canadiensis α2 sequence, the distal hydroxylation sites neighbour those found for the rat α2 sequence. For the second α2 sequence, our partial sequence shows a hydroxylation difference at the third position. Although the rat distal sequences were not detectable, the hydroxylable proline in B. canadiensis is replaced by isoleucine in rat α2. In summary, the hydroxylation assignments of the B. canadiensis are consistent with their experimental observation in a modern-day species (rat), but also show significant differences consistent with a long evolutionary divergence.

Mass spectrometry is now becoming a standard method in many biological and medical institutions. The results presented here, showed that the MS/MS based characterization of collagen, including mass determination and identification, can be easily applied as a very accurate procedure for quality control in the production and application of collagens. The method is of high accuracy and yields results in a very short time frame if compared to conventional methods. Moreover, for study of the collagens, in particular, for the same type of collagen in different tissues and different aging status, the MS/MS technique shows a unique advantage in being able to distinguish the above mentioned PTMs unambiguously.
Fig. 4. MS/MS Sequence coverage with emphasis on the positional hydroxylation of proline as identifying feature for mammalian Type I collagen, as compared with published data from [Schweitzer, M.H., et al., 2007 & 2009]

(a) The amino acid sequences of the full-length mature Type I collagen α₁ (top) and α₂ (bottom) polypeptides (SP: P02454 (α₁) and P02466 (α₂), respectively. The gray shading indicates the sequences derived by MS/MS (see (3) for methods), and the positions of the homologous polypeptides from *B. canadiensis* are highlighted as red boxes. Persistently hydroxylated and partially modified proline residues shown by MS/MS are highlighted in yellow and blue, respectively. Residues differing from the SwissProt sequences were highlighted in green. (b) Detailed comparison of the homologous sequences from rat, *B. canadiensis* and chicken α₁ (top) and α₂ (bottom) polypeptides. The chicken sequence was chosen as this was considered extensively in (2) and because birds are thought to be evolutionarily closer related to dinosaurs than mammals. The red boxes indicate persistently hydroxylated proline residues.
3.4 Applications of UC as biomatrix in tissue engineering

Type I collagen is one of the most widely-used biomaterials as a cell culture matrix and as a biomaterials in the clinic. However, as mentioned above, these applications have been hampered by many drawbacks, most of which are due to the production procedure. We demonstrated in our previous work that the UC-cultured 3T3 fibroblasts showed 3D-like cell morphology and all cell assays of gene regulation employed showed that the UC shows a significant benefit to the cultured cells if compared to plastic surface and acetic acid-extracted collagen. Moreover, we introduced the sol-gel concept to define our UC as a sol-gel like materials in high concentration in aqueous solution at neutral pH (water or culture media with pH 7.4). This product makes the long-term storage of collagen as a powder format possible and simplifies the delivery and application, as the powder can be easily redissolved on demand, even at high concentrations, without any detectable precipitation and or other change of properties. A very important property of the sol-gel UC is the avoidance of contraction of matrix during the cell culture time frame, thereby eliminating an important negative effect of the conventional collagen matrix. In the latter case, the collagen must be used in relative low concentrations and pre-gelled to give a solid gel-like structure. (for detailed results see [Xiong, et al., 2009])

In our study we also used the SEM technique to compare possible fibril formation of UC to that of the native structure of RTT. The SEM images showed random formation of large fibrils during/soon after the dialysis in water with a length more than 10 μm and an average diameter of approximately 2.4 μm. These dimensions are much larger than those of natural collagen (<100 nm). However, the arrangement of the large fibrils, examined using AFM, consists of many small fibrils and showed a visual similarity to those of native tissue (Fig. 3). The difference in fibril diameter is possibly attributable to the lack of additional components (bound carbohydrate, glycoproteins or lipid) present in the starting material and subsequently removed by gel filtration [Brodsky, & Eikenberry, 1982; Brodsky, & Persikov, 2005].

4. Outlook

Although collagen has been studied extensively during last decades, the understanding of its structure and biological functions are still limited, in particular due to the low quality of available collagen for highly accurate analysis. Based upon our newly-established urea-extraction procedure, we have not only demonstrated the high potential of UC as a biomatrix for tissue engineering but also showed indicated some new insights into understanding the structure, assembly, and function as well. We first showed a reversible assembly of UC from urea-solubilized α1 and α2 polypeptides in urea and water [Xiong, et al., 2009]. We then turned to the interesting question of whether this preparation can be used to design a new stable collagen-like/collagen containing biomatrix for tissue engineering. Throughout this review, we have tried to present some new ideas for the characterization of collagen, using modern highly accurate methods such as mass spectrometry and variety of newly established UV-spectroscopic methods for collagen quality control. We believe that there are still a great deal of information to be obtained concerning the post-translational modification of collagen, and that this is relevant for many commercial applications.

5. Acknowledgment

This work was supported by a fellowship of the Peter und Traudl Engelhorn Foundation to X.X.
6. References

Direct Use of Resorbable Collagen-Based Beads for Cell Delivery in Tissue Engineering and Cell Therapy Applications

Veronica Glattauer¹, Wei-Bor Tsai², Jacinta F. White¹, Julie Nigro¹, Tracy A. Tebb¹, Jerome A. Werkmeister¹ and John A.M. Ramshaw¹
¹CSIRO Materials Science and Engineering, Bayview Avenue, Clayton, Australia
²Department of Chemical Engineering, National Taiwan University, Taipei Taiwan

1. Introduction

Tissue engineering and cell therapy represent significant emerging technologies in medicine. Tissue engineering is, "the persuasion of the body to heal itself, through the delivery to the appropriate sites of molecular signals, cells and supporting structures" (Williams, 1999). Various approaches have been described which are labelled tissue engineering, which form a continuum from complex regeneration of scaffold-based tissues to more simple cell-based therapies, where these supporting structures are usually absent or are present in the form of gels simply to aid cell delivery or encapsulation. In tissue engineering the implant to be delivered may frequently be a near mature functional product or a cell-seeded tissue scaffold, both derived in a bioreactor (Haycock, 2011). For cell-based therapies, a bioreactor is not necessary but may be used to amplify the cell numbers for the therapy. Indeed, a key element for both approaches is that they normally require significant expansion of the replacement cells, which have typically been derived in low numbers from small biopsy samples (Brittberg et al., 1994; Chiang et al., 2005; Thissen et al., 2005). A consequence of this expansion is that there can be a significant loss in the quality of cells available for the procedure.

In many cases, monolayer cell culture has been the method of choice for cell expansion (Brittberg, 1999; Brittberg et al., 1994; Henderson et al., 2007). However, while this method is well established and simple it has problems. One of these is that certain cells may de-differentiate and lose their phenotype and biochemical characteristics (Arterburn et al., 1995; Mallein-Gerin et al., 1991). For example, in extended culture, chondrocytes lose their rounded morphology (Fig. 1A) and develop an extended, fibroblast like appearance (Fig. 1B). Also, accompanying this morphological change, matrix biosynthesis switches from type II collagen to type I collagen (Aulthhouse et al., 1989; Lefebvre et al., 1990; von der Mark et al., 1977). It is clear that the collagen produced changes from type II collagen (Fig. 2A), which is the characteristic collagen of articular, hyaline cartilage (Mayne, 1989; Miller & Matukas, 1969) to type I collagen (Fig. 2B), which is a mechanically-inferior fibrocartilage (Chiang et al., 2005; Wegener et al., 2009). Type I collagen is the principal collagen of many tissues,
including skin, bone, ligament and tendons. It is also present in poorly functioning fibrocartilage which can be observed in some arthritic conditions (Aulthouse et al., 1989; Lefebvre et al., 1990; von der Mark et al., 1977). Depending on the cell type, variations in media or other conditions can potentially be used to extend the control on phenotype and biochemical characteristics. For example, lowering of the amount of oxygen has been suggested for control of chondrocyte phenotype in monolayer cultures (Malda et al., 2003), but the positive effect may be limited, possibly to around 10 days (Malda et al., 2003, Oesser & Seifert, 2003), which is less time than would typically be needed for cell expansion for cell therapy applications (Brittberg et al., 1994). Stem cells, especially embryonic stem cells have particular difficulties in maintaining stemness in culture and current trends are aimed at developing specialised media or scaffold-based bioreactors to expand these types of cells.

Chondrocytes have been a cell type of particular interest as they are the cell used in a major cell therapy application, autologous chondrocyte implantation (ACI). The development of ACI has proved to be a particularly useful innovation for certain types of cartilage defects (Brittberg et al., 1994; Brittberg, 1999), and is now an established cell-based therapy for regeneration of certain types of articular cartilage damage. Defects of articular cartilage in the knee do not have the capacity to self repair (Hippocrates, cited by Hunter, 1742-1743). A range of surgical techniques have been proposed for repair of damage and pain relief. These include debridement, abrasion, mosaicplasty and microfracture (Bedi et al., 2010). A range of grafting options have also recently been developed, including osteochondral autografts and allografts and periosteal grafting (Hunziker, 2001; Shah et al., 2007). In ACI a cartilage biopsy sample is taken from the patient that yields low numbers of chondrocytes, which then must be expanded several fold to give sufficient cells for the regeneration procedure. In ACI, the cell expansion takes place in monolayer culture and may take 21 days or longer (Brittberg et al., 1994; Chiang et al., 2005; Henderson et al., 2005). As a consequence, the majority, if not all, of the implanted cells are likely to have lost their chondrocyte characteristics. This compromises the regeneration of a true hyaline cartilage after implant (Brittberg, 1999; Hunziker, 2001; Temenoff & Mikos, 2000). Several other variants on this chondrocyte-based techniques have subsequently been proposed to give tissue regeneration constructs that are placed and secured in the defect (Bartlett et al., 2005; Marlovits et al., 2005). These methods, including ACI, provide methods for pain relief and extend the time period before a total knee reconstruction is required.

There are clear deficiencies in using monolayer culture for cell expansion. An alternative culture system that has been developed is based on spinner culture for cells in suspension (McLimans et al., 1957), which was subsequently adapted to use beads as cell microcarriers (van Wezel, 1967). Microcarriers have been shown to provide clear advantages for cell expansion, as the rate of cell expansion can be considerably greater, and for chondrocytes, the cell phenotype, including the biochemical characteristics, is substantially, if not fully retained (Frondosa et al., 1996; Malda et al., 2003, 2006). Compared to monolayer culture, the mechanical effects that are present in spinner culture may lead to positive effects on certain cell types (Freeman et al., 1994). A wide range of microcarriers have been developed, predominantly based on synthetic materials, which provide a wide range of surface chemistries, such as negatively and positively charged and capable of further modification to introduce biological functions (Jacobson & Ryan, 1982).

The benefits of using spinner culture for chondrocyte expansion for potential application to ACI were initially demonstrated using non-resorbable beads (Frondosa et al., 1996; Lahiji et al., 2000), and spinner culture was shown to be significantly superior to monolayer culture,
with excellent proliferation rates achieved while the cells retained their phenotype (Frondosa et al., 1996). In addition, chondrocytes cultured on a variety of bead types in spinner culture systems have a greater ability to re-differentiate to the differentiated phenotype (Lee et al., 2011; Malda et al., 2003).

Fig. 1. De-differentiation of chondrocytes in monolayer culture to fibroblast-like phenotype. (A) Cells after 3 days in culture, starting to show some elongated characteristics, (B) Cells after 6 days in culture, showing a predominately elongated, fibroblast-like shape

Fig. 2. De-differentiation of chondrocytes in monolayer culture to fibroblast-like phenotype, with collagen production identified by immune-histological staining. (A) Immunostaining for type II collagen production by cells after 3 days in culture. (B) Immunostaining for type I collagen production by cells after 6 days in culture

Various approaches are available for making beads that would potentially be suitable for cell therapy, and several types, for example Cytodex™ beads (Fig. 3A), are commercially available for cell culture. In some cases the beads are biodegradable, for example, resorbable synthetic polymeric (PLGA) beads (Fig. 3B) have been described, including those with surface modifications to enhance cell attachment (Chen et al., 2006; Hong et al., 2008; Thissen et al., 2005).
Natural, extracellular matrix tissues can also be used to make beads for spinner culture, and some, for example highly crosslinked gelatin, Cultispher™, are commercially available. Natural tissue-based beads have a range of advantages compared with synthetic beads, including the presence of natural cell binding and growth factor binding sites, a three-dimensional environment including variation in surface topography, in vivo resorption using normal biochemical pathways, and when crosslinking is introduced, control of the resorption rate can be achieved (Glattauer et al., 2010). These beads can often be readily processed for cell isolation; for example, mildly crosslinked gelatin beads can be readily dispersed using trypsin or collagenase allowing easy separation of cells by filtration. A wide range of possible beads has been described, along with various approaches for manufacture. Beads can be made of natural tissue components (Glattauer et al., 2010), including those based on powdered acellular dermis (Cymetra™) (Maloney et al., 2004), porous collagen beads that are formed after removal of an alginate carrier (Tebb et al., 2007), or mildly, <0.5% (Glattauer et al., 2010) or heavily, >>1%, cross-linked gelatin (Tao et al., 2003).

If cells are expanded for cell therapy using an in vivo biodegradable, resorbable bead, then there is no need to isolate the cells from the beads prior to administration (Glattauer et al., 2010; Werkmeister et al., 2006). Inclusion of the resorbable beads as an integral part of the therapy procedure provides the advantage of minimizing the extent of cell handling and eliminating a final trypsin treatment to detach cells from the beads. Delivery of a cell/bead construct is also preferably performed using a gel system so that an appropriate distribution of the material is obtained and the cell/bead construct can be readily administered. A gel delivery system could be a synthetic polymer, preferably one that could be cured in situ to prevent migration after delivery of the cell/bead materials, while maintaining sufficient porosity to allow cell respiration and growth (Adhikari et al., 2010; Gunatillake et al., 2006; Werkmeister et al., 2010). Another good material for a delivery system is collagen. When cold solutions of soluble collagen are warmed to body temperature, 37 °C, the soluble collagen forms into fibrils and a gel then forms (Gross and Kirk, 1958). This gel is biocompatible, and has been the basis for soft tissue augmentation technology (Knapp et al., 1978; Kaplan et al., 1983). Hence, with use of cell/bead constructs, where the cells do not
require final removal after the expansion phase and can be implanted directly as a cell/bead/gel delivery system, the "curing" of the collagen delivery gel will hold the cell/bead constructs in place. In addition, the potential presence of some extracellular matrix (ECM) that had accumulated during culture (Frondosa et al., 1996; Tebb et al., 2007; Thissen et al., 2005) could assist in retaining the cells at the desired implant location. When resorbable beads are used for cell expansion and then direct delivery of cells, it is possible to design suitable carrier beads with a range of stabilities that matches the implant requirements.

2. Materials and methods

2.1 Preparation of beads

2.1.1 Gelatin beads
Solid gelatin-based beads with cross-linking throughout the bead were produced as previously described (Glattauer et al., 2010). Briefly, 20% w/v porcine A-type gelatin, 270-300 g Bloom (Sigma, St Louis, MO) in 50 mM acetic acid was heated to 50 °C and dispersed at 10% v/v in olive oil at 37 °C by rapid stirring. After 90 min, the emulsion was transferred to 4 °C and stirred for 30 min. Beads were separated from oil by 3 extractions with 0.2% Triton X-100 in phosphate buffered saline, and then cross-linked by addition of selected concentrations of glutaraldehyde (GA) ranging from 0.005% to 0.1%. Cross-linked beads were further extracted with 0.2% Triton X-100 in phosphate buffered saline, water and finally EtOH. Beads were collected by filtration and freeze dried.

2.1.2 Gelatin/collagen beads
For gelatin/collagen beads containing type I or II collagen, collagen was added to cooled, 37 °C, gelatin to give a 10% w/w collagen to gelatin mixture immediately prior to emulsion formation, as for gelatin only beads. Soluble bovine hide type I collagen and soluble bovine articular cartilage type II collagens were prepared using pepsin digestion (see below).

2.1.3 Collagen beads
Collagen beads, based on co-formation with alginate followed by alginate removal were prepared as previously described (Tebb et al., 2007). Collagen beads can also be formed by an emulsion method, similar to that used to prepare gelatin beads (see above). Type I collagen in phosphate buffered saline, pH 7.3, at 8 mg/ml and 4 °C was dispersed at 10% v/v in olive oil at 12 °C by rapid stirring. After 15 min, the emulsion was heated quickly to 37 °C and stirred very gently. The collagen was allowed to gel for 3 h at 37 °C. The collagen gel beads were then stabilised by addition of 0.1% w/v glutaraldehyde and were crosslinked overnight. Beads were washed, as above for the gelatin beads, collected and freeze dried, followed by ethylene oxide sterilisation prior to use. The typical size range prior to fractionation, eg: by sieving, was 100-200 µm.

2.1.4 Bone based beads
Powdered bovine bone particles were obtained from Waitaki Biosciences (Christchurch, NZ) and were sieved to give a 70 to 150 µm fraction. For production of demineralised bone (DMB) particles, the bovine bone particles were suspended in either 0.6 M HCl, or 0.5 M EDTA at pH 7.4, and stirred for 16 h at 4°C. After settling, solutions were removed by decanting. Particles were then further extracted each day for 6 days using the same
conditions, before being washed and freeze-dried (Glattauer et al., 2010). A 70 to 150 μm fraction was collected by sieving. The loss of Ca was confirmed as previously described (Glattauer et al., 2010).

2.1.5 Endosteal particles
Endosteal particles from bovine bone marrow were prepared from fresh sternum from young calves, ~4 weeks old (Nigro et al., 2010). Briefly, dissected pieces of sternum were crushed in liquid nitrogen and the frozen bone marrow powder was freeze-dried. To decellularise the dried particles, they were suspended in water and mixed vigorously for 30 min, and then allowed to settle. The water was replaced with 4% ethanol/0.1% peracetic acid and mixed vigorously for 2 h, and then allowed to settle. The solution was then replaced and the particles mixed with phosphate buffered saline for 15 min, and then allowed to settle. This was repeated and then the settled particles were treated with a cocktail of DNase I (50 U/ml) and RNase A (1 U/ml) in 10 mM Tris-HCl/2.5 mM MgCl₂/0.5 mM CaCl₂, pH 7.6 for 24 h at 37 °C, with gentle agitation. The particles were washed with phosphate buffered saline and then water, and then exchanged into 80% v/v ethanol and sieved to provide a fraction between 40 - 230 μm. To remove any residual calcification, particles were treated with 0.6 N HCl for 16 h at 4 °C, washed three times in sterile water and then stored in 80% (v/v) ethanol.

2.1.6 Basement membrane particles
Fresh bovine testis was obtained from an abattoir. After removal of the external membranes, the tissue comprising the seminiferous tubules was sliced into approximately 5 x 5 x 5 mm pieces and was macerated on a stainless steel wire mesh to break the tissue and release cells with continual irrigation by phosphate buffered saline, including a protease inhibitor cocktail. The tubules were retained on the mesh. Samples were suspended in excess phosphate buffered saline containing protease inhibitor cocktail, and washed and collected by settling 3 times. Washed samples were examined by immunohistology to examine the presence of basement membrane components using antibodies to laminin (Sigma) and collagen type IV (Biodesign, ME) following the methods previously described (Glattauer et al., 2007). Basement membrane samples were fragmented further using Ultra Turrax blender (IKA Werke, Germany). The resulting suspension was examined by microscopy to determine the particle size that was present. The particles were observed to have a maximal dimension of 500 μm. The basement membrane particles can be fractionated if required to give particles of the desired size by use of mesh sieves of appropriate size. All collagen-based particle types were sieved to collect 70 to 150 μm fractions and were sterilised by ethylene oxide, except the seminiferous tubule-derived particles which were sanitised by soaking in 80% EtOH. Bead size distributions were verified by microscopy and image analysis. Unmodified Cytodex™ beads (Amersham Biosciences, Sweden) were used as a synthetic control bead and were sterilised prior to use by autoclaving.

2.2 Culture of chondrocytes
2.2.1 Isolation of chondrocytes
Ovine chondrocytes were isolated from fresh articular cartilage by digestion of 1 mm³ pieces with 10 % trypsin (2 ml/g) (MP Biomedicals), for 1 h at 37 °C, followed by 300 units/ml bacterial collagenase (354 U/ml Clostridium histolyticum, type IAS, Sigma, St Louis, MO) and
760 units/ml hyaluronidase (2 ml/g) (760 U/ml bovine testicular type IV-S, Sigma, St Louis, MO), for 16 h at 37 °C. Cells were collected through a 70 μm filter, and washed and counted prior to seeding. Human articular chondrocytes were obtained from Edward Keller (Cambrex BioScience, Mount Waverley, Australia), (EK 23-7-02, KN8823) and maintained in complete chondrocyte medium (F12:DMEM, 1:1, containing 10% FCS, plus 1 mM glutamine and 10 mM 2-mercaptoethanol); comparable results were obtained with both the ovine and human cells.

2.2.2 Chondrocyte seeding and culture on beads
Cells were seeded onto the various microcarrier beads and cultured in spinner bottles, with an initial density of 5 x 10⁵ cells/150 mg particles in 50ml DMEM/F12/10% FBS containing 100 μg/ml penicillin and streptomycin, at 37 °C in 5% CO₂. Cell seeding was performed with initial 25 rpm intermittent stirring for 2 min every 30 min. After 3 h, the stirring speed was increased to 45 rpm, intermittently as above, for 1.5 h, followed by continuous stirring at 15 min intervals at 45, 50, 55 and finally 60 rpm. After 24 h in culture, the efficiency of cell attachment onto the beads was monitored.

2.2.3 Mesenchymal stem cell seeding and culture on particles
Mesenchymal stem cells were obtained and seeded as previously described (Nigro et al., 2010). A settled volume (0.45 ml) of particles was exchanged into 50 ml MEM/20% FCS/5 ng/ml FGF-2 before adding 2.5 x 10⁵ mesenchymal stem cells in a spinner flask. The flask was stirred at 25 rpm for 2 min every 30 min at 37 °C with 5%CO₂. After 24 h, the spinner flask was set to stir at 25 rpm continuously. After 7 days, a sample of the mesenchymal stem cells/particle construct was taken and cell viability was assessed using Calcein-AM. Images were captured with a fluorescence microscope (Olympus).

2.3 Collagen materials
2.3.1 Isolation and preparation of collagen
Type I bovine collagen was isolated and purified from bovine dermis by pepsin digestion (1 mg/ml) in 50 mM acetic acid at 4 °C as previously described (Ramshaw, 1986). Type I collagen was collected by precipitation by 0.7 M NaCl, and was the further purified by differential salt precipitation at neutral pH (Trelstad et al., 1976). Type II collagen from bovine articular cartilage was isolated in a similar manner. The purified bovine collagens were dialysed exhaustively against 20 mM acetic acid and then freeze dried and stored at -20 °C.

2.3.2 Preparation of collagen gels
To prepare collagen gels, purified collagen was dissolved at 3 mg/ml in 50 mM acetic acid. Once dissolved, the solution was taken to 1 M acetic acid and sealed in a dialysis bag and held against 1 M acetic acid for 24 h. It was then dialysed exhaustively against water followed by 20 mM acetic acid and then taken to about 25 mg/ml by air evaporation at room temperature. Finally, while still maintaining the seal of the dialysis tube, it was taken to 4 °C and dialysed against water and then phosphate buffered saline, prior to removal from the dialysis bag under sterile conditions in a biohazard cabinet.

2.3.3 Preparation of collagen gel and cell-bead composite plugs
Cells were taken after culture on beads in a spinner culture system. Typically, 14 x 10⁶ cells on 0.5 ml beads were used. This was to mimic the concentration of cells in natural hyaline
cartilage. The beads/cells were incorporated by mixing with 0.4 ml of 20 mg/ml type I collagen gel in phosphate buffered saline containing 0.1 ml of 10x concentration cell culture medium. The mixture was then taken into a syringe and centrifuged briefly at low speed to remove any air bubbles and 200 µl aliquots dispensed into 96 well tissue culture plate, which was then incubated at 37 °C for 1 h to allow collagen fibril formation and collagen gelation to occur (Gross and Kirk, 1958). The cell-bead-collagen plugs were then transferred into 24 well culture plates, covered with cell culture medium, and kept in culture for up to 21 days. Ascorbate was added daily to a final concentration 50 µg/ml.

2.4 Evaluation of tissue samples
2.4.1 Histological evaluation
Samples were processed for conventional histology to examine the extent of bead and particle degradation as well as the extent of cellular infiltration into the collagen/bead (particle) plugs. Stains used were standard Haematoxylin and Eosin and Alcian Blue at pH 2.5 and pH 5.8.

2.4.2 Immunohistological evaluation
Immunohistology staining used specific antibodies against collagen types I, II, VI and other extracellular matrix components. Prior to staining with antibodies, cultured cells on beads were washed in warm phosphate buffered saline, and then pre-fixed in ice cold methanol. A range of antibodies was used to assess the type of matrix: goat anti-collagen type II (Southern Biotechnology, Birmingham, AL), goat anti-collagen type I (Southern Biotechnology, Birmingham, AL), mouse monoclonal anti-collagen type VI (1D8-F8/Col6) (Werkmeister et al., 1993) and mouse monoclonal anti-keratan sulphate (5D4, Seikagaku Corp., Tokyo, Japan). Beads were incubated with antibodies for 1 h, washed and then reacted with corresponding FITC-conjugated secondary antibodies, rabbit anti-goat IgG (Southern Biotechnology, Birmingham, AL) or sheep anti-mouse Ig (Silenus, Melbourne, Australia). As controls in all studies, primary antibodies were omitted and replicate slides were stained with only secondary FITC-labeled antibodies.

3. Results and discussion
3.1 Production of collagen-based beads
We have successfully prepared a wide range of biological, collagen-based beads from a variety of starting tissues. These include beads based solely on gelatin, the denatured form of collagen, and on gelatin mixed with non-denatured collagen (Fig. 4) which are readily formed by an emulsion method. Further stabilisation by crosslinking is then used, as otherwise the gelatin beads would not be stable at the 37 °C required for the subsequent cell culture. In the present case, glutaraldehyde has been used as the crosslinking agent. Variation in the extent of the glutaraldehyde crosslinking allows control of the rate of turnover of the beads (Glattauer et al., 2010). A wide range of other crosslinking agents are also possible (Ramshaw et al., 2000) which have also been used successfully in biomedical materials for clinical applications. The gelatin beads formed regular spheres with a reasonably smooth surface (Fig. 4A), although at high power, using SEM, some texture is present (Glattauer et al., 2000) The gelatin beads containing either 10% w/w collagen type I or type II were again uniform spheres, but in this case both showed some surface texture
Direct Use of Resorbable Collagen-Based Beads
for Cell Delivery in Tissue Engineering and Cell Therapy Applications

When the beads were dehydrated in EtOH, the gelatin beads retained their spherical shape (Fig. 4B), while the collagen containing beads became irregular in shape (Fig. 4D, Fig. 4F). However, when these beads were re-hydrated for cell culture they generally returned to their previous spherical shape.

Beads can also be made from collagen alone, without the gelatin component, by various approaches. For example, the emulsion approach used for gelatin (Fig. 4A) can be adapted for use with collagen. In this case the collagen solution at neutral pH must be kept cold during the emulsification stage, so as to prevent fibril formation. Once an emulsion has been formed, it is then warmed to 37 °C which causes the collagen to form fibrils (Gross & Kirk, 1958) and then stable gel particles. Like the gelatin beads, these can then be further stabilised by crosslinking using glutaraldehyde or other reagents (Fig. 5).

Alternatively, collagen beads can be formed by the use of a carrier during the bead forming stage, which is subsequently removed. For example (Fig. 6) alginate has been used as an easy and effective carrier system. In this case a mixture of alginate with collagen that contains a high proportion, ~30-40%, of collagen can be formed, and beads are produced by dropwise (aerosol) addition to 1.5% CaCl₂ (Tebb et al., 2007). The CaCl₂ leads to the precipitation of the alginate to form stable beads, and the collagen can be stabilised by fibril formation and crosslinking as required. The alginate phase can be removed by treatment with Na citrate, giving a collagen only bead (Tebb et al., 2007). Other materials could be used as carriers, including gelatin and other proteins. The collagen triple-helix structure is generally highly stable to proteolytic action, and pepsin treatment is often used during its preparation (Miller & Rhodes, 1982). So a protein carrier, such as gelatin, can be removed by proteolysis, leaving porous collagen beads.

Collagen beads can also be formed directly from tissue. For example, Cymetra™ is prepared from acellular human dermis by fragmentation (Maloney et al., 2004) and is used clinically for tissue augmentation and equivalent procedures. The particles can also be used readily as a cell growth substrate.

An alternate source of collagen beads or particles is from natural collagen containing tissues. The principle protein component of bone is type I collagen. Hence bone particles themselves may present surface collagen to cells to enhance binding (Fig. 7A). Bone particles can be refined using demineralisation, for example with EDTA or HCl, to produce beads enriched of collagen (Glattauer et al., 2010) (Fig. 6B). There are also low levels of growth factors and other biological macromolecules that can add to the effectiveness of the collagen particles in promoting cell adhesion and proliferation. The type and quantity of these molecules may vary depending on the method used to demineralise the tissue and may vary between batches (Wildermann et al., 2007). However, when chondrocytes were grown on particles prepared by both these methods no significant difference was seen in the proliferation rate for the cells (Glattauer et al., 2010). The bone and demineralised bone particles differ significantly from the previous gelatin and collagen beads in that they are irregular in shape, have an irregular surface topography, and do not need additional crosslinking as they are already fully stabilised by the naturally occurring collagen crosslinks. Any soluble collagen would be removed during the demineralisation process. The demineralised bone particles are preferred for spinner culture as they are more bouyant and hence easier to use. Whereas the area of smooth spherical beads in an aliquot, such as synthetic beads or gelatin beads, can be readily calculated from the size distribution of the beads, this is more difficult for irregular shaped beads, and beads with variations in surface topology.
Fig. 4. Production of gelatin and gelatin/collagen beads. Beads in phosphate buffered saline (A, C, E) and after dehydration in EtOH (B, D, F). After rehydration, these beads returned to their original size and shape. (A, B) Gelatin beads, average hydrated bead size prior to fractionation, 106 ± 20μm. (C, D) Gelatin/10% w/w type I collagen beads, average hydrated bead size prior to fractionation, 169 ± 53μm. (E, F) Gelatin/10% w/w type II collagen beads, average hydrated bead size prior to fractionation, 159 ± 53μm.
Direct Use of Resorbable Collagen-Based Beads
for Cell Delivery in Tissue Engineering and Cell Therapy Applications

Fig. 5. Collagen beads prepared by an emulsion method

Fig. 6. Production of type II collagen beads using an alginate carrier (Tebb et al., 2007), with type II collagen at 6.6 mg/ml and alginate at 0.3% during initial bead formation. Bead size ~ 0.7 mm

Fig. 7. Examples of (A) bone particles, and (B) demineralised bone particles
The gelatin, collagen and bone particles are all based principally on type I collagen. Other collagens are abundant in different tissues. For example, type II collagen is the collagen found in normal hyaline cartilage (Mayne, 1989; Miller and Rhodes, 1982) and which could be used to make type II collagen particles by tissue fragmentation and further processing, if required, to remove other components such as proteoglycan. Similarly, type III collagen is a major component of blood vessels, along with type I collagen and elastin (Hanson & Bentley, 1983; McCloskey and Cleary, 1974). Hence, particles rich in type III collagen could be prepared by processing arterial tissue. Type IV collagen is the major collagen component of basement membranes. Basement membranes are unique, highly organised supportive sheet-like structures in the extracellular matrix that are formed at the interface between parenchymal cells and their surrounding tissues (Yurchenco et al., 2004). There are different types of basement membranes in the body. Some act as a tissue boundary where certain cells can attach; some can act as filters with selective permeability, and some support very selective cellular differentiation of a number of different cell types, including stem cells. The basement membrane comprises a range of specific macromolecular components. As well as type IV collagen, which may be important for mechanical properties (Yurchenco et al., 2004), the other components are laminin, nidogen and heparan sulphate proteoglycans, such as perlecan, which are believed to interact in a highly ordered manner with type IV collagen (Yurchenco et al., 2004).

Thus, we have shown that by using natural tissues from different origins, it is also possible to make other tissue derived particles. By having different protein and other macromolecules present, these have the potential to provide different interactions with various cell types. An example is the production of particles from the endosteum of bone (Fig. 8) (Nigro et al., 2010). This tissue is proximal to the location of haematopoietic stem cells (Haylock et al., 2007) and so may be useful in the proliferation of this cell type. The particle composition is distinct; examination of the composition using immunohistology showed that they contain perlecan and some laminin, suggesting similarity to a basement membrane, but collagen type IV was not detected (Nigro et al., 2010).

Fig. 8. Decalcified endosteal particles

Basement membrane particles can also be formed from a range of other tissues, including placenta, muscle and kidney (Werkmeister et al., 2006). In the present example, particles have been prepared from seminiferous tubules. The tubules are readily isolated from testis tissue (Fig. 9A), and immunohistological analysis has shown that the major components of
collagen IV (data not shown) and laminin (Fig. 9B) have been retained during the processing. Further fragmentation can be used to prepare particles (Fig. 9C). The composition of this basement membrane is distinct (Glattauer et al., 2007) showing the presence of various laminin types based on the positive staining for the α3, α4, α5 and α6 chain of collagen type IV and the positive staining of various laminin chains, including the α2 and β2 chains. This composition is distinct from that of the commercial basement membrane material, Matrigel™, which is based on (α1)2α2 type IV collagen and α1β1γ1 laminin (laminin 111)(Kleinman & Martin, 2005). Matrigel™ has been used extensively for addressing cell attachment so a different composition basement membrane may provide a useful alternative option for cell culture.

3.2 Cell compatibility of beads

To be useful, any bead must clearly not be cytotoxic and must allow ready attachment and growth of cells. All the beads and particles described above (Figs. 3-9) meet these criteria. There was no evidence of any cytotoxicity due to residual glutaraldehyde that had been used to crosslink some of the beads.

Fig. 9. Seminiferous tubule-based particles. (A) Fragments of isolated seminiferous tubules. (B) Immunostaining of isolated seminiferous tubules, showing the retention of laminin during the processing. (C) Seminiferous tubules particles after further fragmentation of isolated tubules

Fig. 10. Gelatin-based beads with chondrocytes after 3 days in spinner culture, showing good attachment and retention of the round chondrogenic phenotype. (A) Gelatin beads, (B) Gelatin/Type I collagen beads, (C) Gelatin/Type II collagen beads
As an example, chondrocytes readily attach to gelatin and gelatin/collagen beads and are viable and starting to proliferate after 3 days in culture (Fig. 10). Similarly, cells readily attach and start to proliferate on bone (Fig. 11A) and demineralised bone particles (Fig. 11B). Attachment and growth of chondrocytes was good on the seminiferous tubule particles, even after only 2 days in culture (Fig. 12).

Fig. 11. Chondrocytes growing on bone particles. (A) Sheep chondrocytes on bone particles after 3 days in spinner culture, (B) Human chondrocytes on demineralised bone particles after 4 days in spinner culture.

3.3 Cell growth rate on beads
Previous studies (Frondoza et al., 1996) had suggested that cell proliferation of chondrocytes on synthetic microcarrier beads was superior to that found in monolayer culture. The present work using biologically based beads supports this finding (Fig. 13). Thus, over a 21 day period, with cell collection and re-seeding after 7 and 14 days, the spinner culture using both gelatin and demineralised bone particles was significantly better than that found using monolayer cultures. In all cases, the bead experiments were established so that the surface area of the carriers was equivalent to that used in the monolayer cultures. The cell yield for
the gelatin beads was almost one order of magnitude greater than with monolayer cell culture (Fig. 13). The performance of demineralised bone particles was even better, being better than 2 orders of magnitude greater than for monolayer culture. As similar culture conditions were used for both the gelatin and demineralised bone particles, this reflects the differences in surface compositions and the surface topography of the two bead types as well as the potential for the demineralised bone particles to contain some active growth factors that may boost cell proliferation (Wildemann et al., 2007). Comparisons in an additional experiment including other bead systems (Table 1) showed that proliferation rates were consistently better for biological, collagen-based beads when compared to monolayer culture and a synthetic bead.

Fig. 13. Proliferation of human chondrocytes in monolayer culture and in spinner culture using different microcarrier systems. The initial loading was 0.25 x 10⁶ cells on beads that gave equivalent surface areas of ~125 cm² (equivalent to 5 T25 monolayer flasks. ● monolayer culture, ♦ spinner culture using gelatin beads, ▲ spinner culture using demineralised bone particles

<table>
<thead>
<tr>
<th>Culture system</th>
<th>Bead/particle type</th>
<th>Proliferation rate after 21 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monolayer</td>
<td>n/a</td>
<td>5.5</td>
</tr>
<tr>
<td>Spinner Culture</td>
<td>Cytodex</td>
<td>6.5</td>
</tr>
<tr>
<td>Spinner Culture</td>
<td>Gelatin</td>
<td>38.4</td>
</tr>
<tr>
<td>Spinner Culture</td>
<td>Bone</td>
<td>37.2</td>
</tr>
<tr>
<td>Spinner Culture</td>
<td>Demineralised bone</td>
<td>47.2</td>
</tr>
</tbody>
</table>

Table 1. Comparison of the proliferation rate for human chondrocytes obtained using different culture systems. The proliferation rate was determined relative to the initial number of cells that were seeded

3.4 Extracellular matrix production in culture
In the present study we have focussed principally on chondrocytes. In these cases, with a variety of different beads in spinner culture, newly formed extracellular matrix was found
to accumulate around the beads and cells, causing clumps of tissue-like material to form in the cultures. This was clearly evident by 7 days, for example, with gelatin and gelatin/collagen beads (Fig. 14), where a matrix of cells and collagen can be seen holding most beads in clumps.

Fig. 14. Growth of chondrocytes on various beads after 7 days in spinner culture, showing the clumping of beads due to the formation of new extracellular matrix. (A) Gelatin beads, (B) Gelatin/Type I collagen beads, (C) Gelatin/Type II collagen beads

Histology, using Haematoxylin and Eosin staining (Fig. 15) shows the presence of this new connective tissue with cells throughout. Not all cells have migrated from the beads into this new matrix and some are still stained on the bead surfaces. A similar result is seen for chondrocytes grown in spinner culture on bone particles (Fig. 15C).

Fig. 15. Haematoxylin and Eosin staining of the growth of chondrocytes on various beads after 7 days in spinner culture, showing the new extracellular matrix that is formed (A) Gelatin beads, (B) Gelatin/Type I collagen beads, (C) Bone particles

With the porous collagen beads, the initial phase of cell proliferation was mainly infiltration of the collagen bead and less accumulation of cells and extracellular matrix external to the particles and hence less clumping was observed than with the gelatin beads (Fig. 16). On the other hand, a small amount of clumping of particles was also observed when human mesenchymal stem cells were grown on decalcified endosteal particles for 7 days. Cell attachment was good and proliferation had commenced, but was not as advanced as seen for chondrocytes on other bead systems (Fig. 17).
Direct Use of Resorbable Collagen-Based Beads
for Cell Delivery in Tissue Engineering and Cell Therapy Applications

Fig. 16. Growth of chondrocytes for 7 days on porous collagen beads prepared through alginate removal (Tebb et al., 2007), showing infiltration of the beads by cells

Fig. 17. Growth of human MSCs for 7 days on decalcified endosteal particles. (A) Cells attached to particles, (B) staining with Calcein-AM, which stains cell cytoplasm, and (C) Merging of the previous 2 images

Fig. 18. Haematoxylin and Eosin staining of the growth of chondrocytes on various beads after 21 days in spinner culture, showing the formation of new extracellular matrix. (A) Gelatin beads, (B) Gelatin/Type I collagen beads, (C) Gelatin/Type II collagen beads

After longer periods of culture, 14-21 days, continued extracellular matrix production was seen when ascorbate was included, and cell proliferation also occurred. After 21 days,
Haematoxylin and Eosin staining of materials containing gelatin and gelatin/collagen beads showed extensive matrix between particles (Fig. 18), which were now more separated than in the 7 day clusters (Figs. 14 & 15). In addition, the particles containing collagens were now showing erosion and degradation (Fig. 18B, Fig. 18C), while the gelatin alone particles were still substantially intact (Fig. 18A). Alcian Blue staining of these samples confirmed that the gelatin alone beads were more stable than those containing collagen (Fig. 19) and showed that the extracellular matrix contained proteoglycans/glycosaminoglycans which are key products of chondrocytes and are indicators of proper cell function and cartilage formation. The staining was strongest around the periphery of the particles where cells were still attached. The chondrocyte cell phenotype was also examined by immunohistology (Fig. 20). This showed that after 14 days in spinner culture the chondrocytes were still producing type II collagen, the correct collagen for articular (hyaline) cartilage formation, and the amount of type I collagen being produced was very low (Fig. 20).

Fig. 19. Alcian Blue staining of the growth of chondrocytes on various beads after 21 days in spinner culture, showing the formation of proteoglycans within the new extracellular matrix. (A) Gelatin beads, (B) Gelatin/Type I collagen beads, (C) Gelatin/Type II collagen beads

Fig. 20. Immunohistological staining of chondrocytes grown on gelatin beads in spinner culture for 14 days, showing continued production of type II collagen and little, if any type I collagen production. (A) Immunostaining for type II collagen, (B) Immunostaining for type I collagen
3.5 Bead culture in a collagen carrier gel

It was noted earlier, in the Introduction, that if cells are expanded for cell therapy on biodegradable, resorbable beads, then there is no need to isolate the cells from the beads prior to administration (Glattauer et al., 2010; Werkmeister et al., 2006), and that this has the advantage of minimizing the extent of cell handling that is required. In such a system, delivery of the cells/bead in a gel or gel forming material has further advantages. The presence of the gel stabilises the cell implant, and aids in the delivery of the cell/bead constructs.

Collagen type I gel is an ideal FDA approved protein that can be used as the delivery vehicle. When mixed with the cell/bead constructs the mixture can still be readily delivered through a 22-gauge needle, while the particles with bound cells remain uniformly dispersed and do not settle out rapidly (see Fig. 21A, where the particles have been stained to highlight the distribution in the gel). On warming to 37 °C for 1 h, the collagen formed a fibrous, solid gel that was able to be picked up, if required (Fig. 21B). This would not be necessary for in situ application of the mixture by injection into tissue. Indeed, we have injected a solution of cell/bead constructs in collagen gels and found that the mixture gelled in situ and gel contraction was markedly reduced by the presence of the beads (data not shown).

The cell/bead constructs embedded in a collagen gel can be maintained in culture for greater than 3 weeks. During the initial stages of culture, within 3 days, if synthetic, unmodified Cytodex™ beads are used, the cells show a greater affinity for the collagen of the gel than the bead and migrate from the beads into the surrounding gel. Cell migration is much slower from gelatin and other biologically–seeded beads where there seems a possible better affinity for the bead.

Fig. 21. Delivery of cell/bead constructs using a collagen gel. (A) Stable dispersion of gelatin beads, after staining, in a 1% collagen type I gel. (B) Collagen gel with beads, after heating to 37 °C forms a mechanically stable gel.

After 3 weeks in static culture, the cell/gelatin beads/collagen gel construct had a tissue-like appearance (Fig. 22), and the loose structure of the original gel construct had formed a firmer, more compact structure, which showed very minimal contraction. When cells are seeded into collagen gels alone, the gel contracts significantly, by ~50% or more, within the first 7 days of culture (Ramshaw et al., 1991) and again forms a more compact tissue-like format.
The presence of the beads appears to retard any contraction of the collagen gel, while at the same time the synthesis of extracellular matrix augments the structure. Chondrocytes in culture can produce matrix metalloproteinases (Lefebvre et al., 1990) which could degrade the construct. The presence of the beads, where the cells have formed an established matrix prior to incorporation in the collagen gel may minimise the production of these proteinases. However, after 2 to 3 weeks of culture some erosion of gelatin beads was seen (Fig. 23A, Fig. 23B). The extent of this erosion was greater than when the collagen delivery gel was absent (Fig. 18A).

The presence of new extracellular matrix can be seen by histochemical and specific immunohistological staining. Haematoxylin and Eosin staining after 2 weeks of culture (Fig. 23A) shows extensive cell infiltration of the collagen gel, and new collagen synthesis around the beads and within the gel. Alcian Blue staining after 3 weeks of culture (Fig. 23B) shows significant deposition of proteoglycan/glycosaminoglycan within the gel surrounding the beads, as well as very strong staining around the beads themselves. This staining was not present in the original collagen gel and is therefore indicative of new matrix production.
This is also the case for type II collagen production. Immunohistology after 2 weeks of culture (Fig. 23C) shows that there is type II collagen accumulation, possibly at low levels, throughout the matrix, while there is strong staining around the beads.

4. Conclusions

The data presented in this Chapter show that a wide variety of collagen-based beads and particles can be made which are useful for spinner culture. The beads can be made with a range of tissue-like conformations, ranging from denatured collagen (gelatin) through to beads that are based around basement membrane and collagen type IV structures. The beads, including those that have been further crosslinked using glutaraldehyde, were not cytotoxic and readily supported cell growth. The cell growth in spinner culture was excellent and within 7 days there was normally accumulation of new extracellular matrix. For cell therapy applications, the proliferation rates of chondrocytes were excellent, several fold better than monolayer cultures and synthetic beads. While most biological tissue based particles or biologically fabricated beads were excellent cell carriers, demineralised bone particles and gelatin beads were particularly good, the former possibly augmented by residual growth factors. In a therapeutic application the demineralised bone-based beads could have a fairly long resorption rate. If a shorter resorption rate was preferred, then gelatin beads are ideal, and the rate of resorption can be controlled by varying the extent of glutaraldehyde stabilisation (Glattauer et al., 2010). After longer times in culture, exceeding 21 days, the chondrocytes maintained their phenotype and were still producing macromolecules characteristic of native articular cartilage, such as proteoglycans and type II collagen. For therapeutic applications a superior approach is to deliver the cell/bead constructs in a delivery gel; in the present study a gel of type I collagen has been used. In this case the choice and design of the beads can be selected to match the requirements with respect to cell type and bead resorption rate. These gel constructs were shown to be stable, retaining their size and becoming more robust with new matrix accumulation. Again the chondrocytes maintained their phenotype over 21 days, as shown by proteoglycan and collagen type II production.

Together, these data show the utility of expanding cells on biological, collagen-based beads in spinner culture for tissue engineering and cell therapy applications. Further, these data also show that an ideal approach is to use resorbable beads for cell expansion and then direct delivery of cells still attached to the beads, where it is possible to design carrier beads with a range of stabilities that matches the implant requirements. An ideal way of achieving this implant is to combine the cells/beads together with a delivery gel. This proposed approach has been used in an animal trial for articular cartilage repair, where it was compared to a standard ACI approach (Chiang et al., 2005). The results strongly confirmed the validity of the proposed method, with an independent multifactor scoring system showing that the cell/bead/gel approach was significantly better than a standard ACI procedure and a non-cell control in a mini-pig model (Chiang et al., 2005). The approach can be further improved by examining delivery systems that allow the delivery and stabilisation of the cell/bead construct by arthroscopy, removing the need for open knee surgery. Equally, although the present techniques use cartilage biopsies obtained from non-load bearing cartilage, recent developments in cell biology, for example the ready acquisition of mesenchymal stem cells which can be differentiated into chondrocytes, opens up further opportunities that may minimise invasive surgery for the patient.
5. References

1. Introduction

Collagen is a naturally occurring matrix polymer which is highly conserved across species. It is the predominant extra-cellular matrix component of most connective tissues within the mammalian body, comprising one third of all protein found within tissues. Collagens are extracellular and have a mainly structural role. Critical parameters including density, packing and orientation (or direction) results in distinctively varying mechanical properties in tissues such as bone, skin, tendon and cartilage.

In connective tissue lost to trauma or disease, replacement tissue strategies, have to consider mechanical implications. Synthetic polymers can be designed to have the mechanical integrity of the native structure to be replaced but eventually this will be degraded and replaced by the host. The major target protein that will be replaced in connective tissues is collagen. The other alternative is to start with collagen as a natural polymer substrate and tailor its mechanical properties in vitro. Given the critical role this protein plays in tissue structure there have been and continue to be efforts into extracting this protein, reforming 3D scaffolds for tissue engineering as well as controlling density and direction parameters to form tissues in vitro. The main difference in the building of bulk tissues is the cell-rich or matrix-rich nature of the tissue being engineered. Where the matrix dominates a tissue, the mechanical properties of the matrix are critical, i.e in connective tissue. In tendon for example, the alignment of collagen fibrils along the principle axis of strain application, and the nature of a ‘dual’ size of fibril diameters, provides incredible strength to this tissue. Compared directly to a tissue like dermis, where collagen is interlocked in a basket-weave formation with elastin to provide tensile strength in multiple axis to ensure stretching of this tissue does not compromise its integrity. Thus, when engineering tissues in vitro, technologies and processing to control parameters of collagen architecture have been developed to mimic those found in tissues in situ. This field of controlled processing is growing, as the sophistication of methods employed to create biomimetic scaffolds advances. Type I collagen scaffolds are widely used in clinical practice and the collagen for these materials are generally obtained either from cultured cells or extracted from native tissues. Extraction encompasses the entire range from decellularisation of collagenous tissues preserving the native architecture to the complete break down into collagen molecules which can later be reconstituted into their native fibrillar structure. One of the most common
Regenerative Medicine and Tissue Engineering - Cells and Biomaterials

Collagen scaffolds in clinical use is de-cellularised dermal tissue. By decellularising an entire piece of connective tissue, the immunogenicity of the tissue is removed whilst retaining the collagen architecture and other matrix components in the native form. These scaffolds induce and guide tissue repair when implanted in a full-thickness skin defect as a template for dermal regeneration. Methods to enhance the in vivo persistence of such decellularised scaffolds, involve dispersion of the collagen matrix. The dispersion of collagen can result in the degradation of the collagen into polymers, oligomers or monomers dependent upon the treatment methods applied. This is followed by co-precipitation with a glycosaminoglycan. In these cases the inherent architecture of the native tissue is lost and reformed in vitro.

The formation of living collagenous tissue equivalents rely upon the cell seeding of decellularised native tissues or cell-seeding into prefabricated, porous collagen scaffolds. The next generation of skin equivalents are bio-engineered cell based technologies using cell produced collagen. These include the next generation bilayered skin equivalents produced by Organogenesis. The use of solubilised collagen as dermal and lip fillers for the correction of contour deformities, is a growing cosmetic procedure. This relies upon collagen dispersion from either human cadaver or bovine tissue, which can then be stably re-injected to ‘plump’ to fill minor defects. The question is whether the fibrosis response by the injection of these products causes the therapeutic effect or the products themselves.

The main focus of this chapter is to address the importance of collagen protein structure and its relation to normal mechanical function in matrix-rich tissues. This chapter will overview the established, clinically used and new novel processing technologies being researched to improve and control bulk collagen processing for applications in regenerative medicine, and new directions needed to control collagen architecture.

2. Collagen- the dominant extra-cellular protein

Collagen is a naturally occurring matrix polymer which is well conserved across species. It is the predominant extra-cellular matrix component of most connective tissues within the mammalian body, comprising one third of all protein found within tissues, particularly musculo-skeletal tissues. There are 27 known types of Collagen which are extracellular and have a mainly structural role. The configuration of this protein greatly affects its role in tissue architecture. Parameters including density, packing, degree of cross-linking and orientation (direction) result in distinctively varying mechanical properties in tissues such as bone, skin, tendon and cartilage.

An example is the bi-modal distribution of fibril diameters found in tendons, which are aligned parallel to the direction in which strain is applied (Morgan et al. 2006). This confers strength in one direction, which is precisely the axis of strain generation required for a tendon.In comparison to this, the collagen architecture of skin varies considerably. Collagen fibrils in this tissue are weaved in to a more ‘random’ structure, along with components like elastin, to confer a ‘stretchy’ property on this tissue, which is constantly being deformed due to the structure and function of skin. In fact, parallel alignment of collagen fibrils is more apparent in scarred skin tissue compared to normal (Verhaegen et al. 2009). The architecture of this protein is, therefore, tissue-specific, and mimicking this architecture will be important for scaffolds design and tissue engineering.

Although Collagen is the major extra-cellular component of most connective tissues in the body, additional ECM components contribute to the mechanical properties, cell-attachment properties and regulation of architecture. An example of this is the presence of collagen II in
conjunction with proteoglycans in cartilage, which provide compressive load strength to this tissue. Although mainly collagen type I, Hydroxyapatite is the major mineral component of bone. There is currently active research in making composite matrices containing both of these components, to create biomimetic scaffolds for bone engineering. For the tissue engineering of vascular grafts, the elasticity of vascular structures (such as the pulmonary aorta) is critical to mimic in vitro. This mechanical feature is dependent upon the very high presence of elastin within these structures, and for vascular graft engineering the incorporation of elastin protein, along with the other component proteins is necessary. Vessels contain multiple cell types and specific basement membrane proteins are necessary for the correct phenotype of these cells, particularly endothelial cells, which line the lumen. One of the most successful approaches for tissue engineering remains de-cellularisation of xenograft tissue, followed by cell-seeding using bioreactor culture.

3. Matrix-rich tissues

The matrix component of different tissue types is dependent upon whether these tissues are cell-rich (central nervous system, skeletal muscle, organs like heart, liver, kidneys), versus matrix-rich (tendon, ligament, cartilage and bone). Collagen type I plays an important role in most matrix rich tissues, but there are numerous other protein components critical to the unique architecture of tissues. Matrix-rich tissues are often very hierarchical in structure, because the physical nature of the tissue is mainly as a support system for the skeleton. Both tendon and skeletal muscle have distinct ‘bundle within a bundle’ structure, where mainly collagen (in the case of tendon) and myofibrils (in the case of skeletal muscle) are bundled in graduating structures, along the principal axis of strain the tissue will have to bear. The packing of protein components thus becomes critical to how load is distributed within a tissue, and ultimately results in whether a tissue is a successful component for locomotion.

The architecture of collagen type I is particularly crucial to matrix-rich tissues, as the strength required of these tissues can only really be achieved by recapitulating these precise features, including orientation of fibrils (direction), diameter and density. If we take bone as an example, this tissue is intrinsically linked to the skeletal muscle system, and itself through connections with tendons and ligaments. It is mainly composed of collagen type I and a mineral component. The conformation of collagen varies dependent on which bone we study, and where we study it. The most common ‘surface’ feature of bone is composed of alternate lamellae of longitudinal and transverse bundles of collagen fibres, running parallel to the surface of the bone (Smith 1960). The mineral component within bone is interspersed within these lamellae structures. The intense load endured by bone tissue is therefore appropriated by the particular structure of the extra-cellular components. As bone is subject to load in varying axis of strain, a simple parallel bundled array of fibres (as seen in tendon) is not observed.

Whilst engineering specific tissues, mimicking the correct matrix components as well as the specific architecture will result in increased success in modeling of a tissue. Functionality of any engineered tissue is likely to be critically dependent on the biomimicry, particularly of the structure of the protein component. For replacement of matrix-rich tissues, the mechanical functionality of any tissue engineered scaffold will be optimal if the architecture and packing of the matrix components closely mimics that found in vivo naturally. Collagen to collagen attachment is primarily through increased cross-linking, and cell-collagen
interaction is primarily through the integrins $\alpha 1\beta 1$ and $\alpha 2\beta 1$. The majority of replacement tissues engineered implants and constructs currently either rely upon synthetic grafts, which provide the adequate mechanical load-bearing properties, or on compositions of native proteins which do not necessarily provide the appropriate mechanical properties.

4. Collagen used in vivo

The majority of collagen scaffolds used for clinical purposes are made from extracting collagen from tissues. In the process of extraction very often collagen and other proteins are highly denatured. This is a result of the highly effective methods of cross-linking in vivo. The limited understanding of the protein Elastin, for example, is mainly due to our inability to extract it in its native form from tissues. The efficient mechanism by which proteins are built into tissue architectures by the body are in part hindering our complete understanding of those very mechanisms and proteins.

The main use of collagen for clinical application are as replacement scaffolds used as tissue fillers, and as support matrices for matrix rich tissues. These collagen scaffolds are now widely used in clinical practice, primarily as skin substitutes and dermal fillers. Because of the naturally high composition of collagen in matrix rich tissues, collagen scaffolds are the natural protein to use as a scaffold, however in the process of engineering or assembling such scaffolds, much of the native protein structure, and thus inevitably function, is lost.

The extraction method varies for each scaffold type and resulting scaffolds properties therefore vary. The majority of these scaffolds are composite materials, often with synthetic components, primarily to provide strength to the scaffold, necessary to hold sutures and withstand the mechanical loads at the implant site and/or tissue. Here, we overview the products available as collagen type I based tissue equivalents and substitutes.

4.1 Collagen dermal tissue equivalents

The most widely used tissue equivalent scaffolds clinically, is for replacement dermal equivalents. The majority of products available rely upon a fabricated collagen mesh, mainly without a cellular component. Generally collagen is isolated from tissue samples, and in the process the collagen is greatly disaggregated and denatured, often resulting in complete loss of the original architecture and packing, and comprising mainly of fragments of the original protein. The majority of these scaffold equivalents are composed solely of collagen, without the addition of other extracellular matrix components.

Integra (Yannas et al. 1981) is the first FDA-approved skin substitute consisting of a sutureable, semi-permeable silicone elastomer (polysiloxane, Dow Corning Liquid Silastic Medical Adhesive Type A) cured to an underlying dermal component made of a degradable crosslinked (vacuum dehydration and gluteraldehyde) coprecipitation of bovine collagen and (8%) chondroitin 6-sulfate (a shark cartilage derived glycosaminoglycan). Integra is used to reconstruct the skin in a two stage procedure in surgically excised burn injuries (Burke et al. 1981; Heimbach et al. 1988) or in excised benign or malignant lesions (Prystowsky et al. 2001). After it has integrated, generally 2-3 weeks after implantation the silicone membrane is removed and the neodermis is grafted with a split thickness skin graft. Histologically the dermal matrix disappears after one month (Stern et al. 1990) and only elicits a small transient immune response (Michaeli and McPherson 1990). Graft take is similar to allografts, but not as good as autografts. One of the major benefits being is that it is cosmetically superior over meshed autografts (Heimbach, Luterman, Burke, Cram,
Collagen: Applications of a Natural Polymer in Regenerative Medicine

Herndon, Hunt, Jordan, McManus, Solem, Warden, & . 1988) and the reconstructed skin has elastic properties matching that of normal skin (Nguyen et al. 2010).

Alloderm (LifeCell Corp, Branchburg, NJ) is decellularised dermal matrix derived from human cadaver skin by the tonic removal of epidermis with NaCl and decellularisation with sodium dodecyl sulphate (a detergent) of the dermal component. For storage, the resultant acellular dermal matrix was freeze-dried in a cryoprotectant solution (dextran, sucrose, raffinose) followed by a two-step drying procedure. For use the dermal matrix is rehydrated in two changes of sterile normal saline. Clinical studies have shown it to be useful as a dermal substitute in full thickness burns without signs of rejection, showing revascularisation, cellular repopulation, incorporation into the wound and cosmetic results similar to intermediate thickness skin grafts (Wainwright et al. 1996).

Dermagraft (Cooper et al. 1991) is fabricated by seeding and maintaining fibroblasts on a Vicryl mesh for a period of 2 to 3 weeks to achieve a sufficient amount of tissue formation for a therapeutic effect. The product is currently FDA approved for the treatment of venous (Omar et al. 2004), neuropathic and diabetic ulcers (Marston et al. 2003). Dermagraft is more effective than conventional treatments of chronic (persisting longer than 6 months) venous (Omar, Mavor, Jones, & Homer-Vanniasinkam 2004), neuropathic and diabetic ulcers (Marston, Hanft, Norwood, & Pollak 2003) and the product is FDA-approved for these applications. The material ‘takes’ in (immune-compromised) animal wounds, but integration in human (immuno-competent) subjects has not been reported and Dermagraft requires multiple applications to achieve a clinical effect.

Dermagraft is not to be confused with Dermagraft-TC (Dermagraft Transient Cover, currently marketed as TransCyte) which is fabricated by culturing allogeneic human neonatal fibroblasts 17 days on Biobrane (Bertek Pharmaceuticals Inc., WV, USA) a semi-permeable polymer (silicone) membrane with partially embedded woven monofilament nylon mesh onto which porcine collagen peptides are chemically bound to form a hydrophilic surface (Hansbrough et al. 1994). The product is devitalised by freezing and the cell produced ECM contains fibronectin, type I collagen, proteoglycans and growth factors. The product is a temporary cover for partial thickness burns and is spontaneously ejected by healing wounds. It has shown to, decrease hospital stay compared to conventional treatment (silvazine) (Amani et al. 2006), prevent frequent and painful dressing changes, autografting, and decreases the time to wound closure compared to alternative treatments (Biobrane alone, silvazine) (Kumar et al. 2004).

Apligraf (Organogenesis Inc., MA and Novartis Pharmaceutical Corp., NJ, US) (Wilkins et al. 1994) is a commercially available skin equivalent consisting of a bovine collagen (type I) hydrogel seeded with allogeneic human neonatal foreskin fibroblasts and keratinocytes (Bell et al. 1981a;Bell et al. 1981b). The mechanical properties of the dermal component are improved by allowing collagen to contract for 6 days after which keratinocytes are seeded and cultured for 4 days under submerged conditions and terminally differentiated into a stratified epidermis for an additional 7 days at the air/liquid interface. Apligraf is currently FDA approved for the treatment of venous leg (Falanga 2005) and diabetic foot ulcers (Veves et al. 2001). Apligraf is more effective than conventional treatment (i.e. compression therapy and saline-moistened gauze, respectively) in achieving wound closure in chronic (lasting longer than 6 months) non-healing venous leg (Falanga 2005) and diabetic foot ulcers (Veves, Falanga, Armstrong, & Sabolinski 2001) and is FDA-approved for the treatment of these conditions. As previously mentioned, Apligraf does not persist in human acute full thickness skin defects (cells remain in the wound up to 4 weeks) (Griffiths et al.
Regenerative Medicine and Tissue Engineering - Cells and Biomaterials

2004) and requires multiple applications for it to be effective. It is noteworthy that Organogenesis is currently in late stage development of a next generation allogeneic skin equivalent, VCTO1, which similar to Apligraf with the only difference being that the dermal matrix will be human fibroblast derived making its components all human.

OrCel (Forticell Bioscience, Inc., formerly Ortec International, Inc., NY, US) (Eisenberg and Llewelyn 1998) is currently under investigation for the treatment of chronic wounds. The product is currently FDA-approved for the treatment of split-thickness skin graft donor sites (Still et al. 2003) and for use in the surgical release of hand syndactyly secondary to epidermolysis bullosa. This commercially available skin equivalent is fabricated by seeding allogeneic fibroblasts into a preformed lyophilised bovine collagen (type I) sponge which is cultured for 2 days, inverted and seeded with keratinocytes on its non-porous side and cultured for an additional 7-14 days (Bell, Ehrlich, Sher, Merrill, Sarber, Hull, Nakatsuji, Church, & Buttle 1981b) to form a confluent monolayer epidermis.

4.2 Dermal fillers

Bovine collagen

Zyderm I, introduced in 1977 (Knapp et al. 1977) and FDA approved in 1981, is an injectable soluble, bovine collagen implant for the treatment of fine, superficial lines. The acid-soluble collagen is extracted from bovine dermal tissue with acetic-acid and is then pepsin-treated to yield telopeptide-poor collagen with low antigenicity. The collagen is 96% type I and 4% type III collagen and it is purified to over 99% and dispersed in phosphate buffered saline (PBS) containing 0.3% lidocaine hydrochloride to a concentration of 35 mg/ml. The monomeric collagen solution spontaneously polymerises at 37 °C (Knapp, Luck, & Daniels 1977). Zyderm II, FDA approved in 1983, is similar to Zyderm I but contains 65 mg/ml of collagen and is used to treat mild to moderate lines. Both Zyderm I and II only provide a short clinical effect from two to three months (Kligman and Armstrong 1986). Zyplast, FDA approved in 1985, is similar to Zyderm I collagen, but is chemically cross-linked with 0.0075% glutaraldehyde, making it less susceptible to degradation by collagenases (McPherson et al. 1986) and extending in vivo persistence from three to six months (Kligman & Armstrong 1986). Multiple applications, however, are still required for an extended effect. Resoplast (Rofil Medical International, Breda, The Netherlands) is another bovine collagen suspended in a solution of phosphate buffer, sodium chloride, and lidocaine hydrochloride at a concentration of 35 and 65 mg/ml. This dermal filler persists in vivo for a period of three to six months (Naoum and Dasiou-Plakida 2001).

Arteplast, introduced in 1991, is an injectable material composed of microspheres 20 – 40 μm of polymethylmethacrylate (PMMA) suspended in a solution of denatured collagen (Lemperle et al. 1991). Due to issues with foreign body granulomas in reaction to the microspheres, in 1994, Arteplast was replaced by Artecoll (Lemperle et al. 1995) which features larger PMMA microspheres (30 – 50 μm) suspended in Resoplast (35 mg/ml). The product was subsequently FDA approved in 2006 and marketed as Artefill (Matarasso 2006). Artefill is a permanent filler for the correction of nasolabial folds and the effect of the collagen carrier is sustained by the microspheres through local induced fibrosis which replaces the carrier with host tissue (Lemperle et al. 2010).

Porcine collagen

Small intestinal submucosa (SIS) is derived from the small intestine of pigs. Following de-cellularisation the remaining matrix, which is mainly composed of collagen as well as a
complex mixture of functional and structural molecules, is sterilised and the intact piece of tissue is ready to be used as a replacement scaffold. The benefit of decellularising an intact piece of tissue, whilst retaining the unique 3D ultrastructure, is the low immunogenicity issues which occur when implanting such a scaffold, and the ability of the body to repopulate such a scaffold with its own cells (Badylak et al. 2010). The precise architecture can never be replicated 100%, as even the actions of decellularisation and sterilization affect protein structure, however for matrix-rich tissue replacement this approach is of particular importance, as some elements of the mechanical features of load-bearing tissues can be replicated. There are continuing efforts to use this model to de-cellularise entire organs, and use these ‘templet’ scaffold architectures to re-seed cells into a more biomimetic environment (Badylak, Taylor, & Uygun 2010).

Evolence (or Dermicol-P35, ColBar LifeScience, Herzliya, Israel) consists of collagen suspended in a phosphate-buffered saline at a concentration of 35 mg/ml (Narins et al. 2007). The collagen is derived from pepsin-treated porcine tendons. The purified, telopeptide-poor collagen monomers are polymerised and then cross-linked with D-ribose. The product was FDA approved in 2008 for the treatment of mid to deep facial wrinkles and the cosmetic effect persists up to one year after administration (Narins et al. 2010). The risk of a hypersensitivity response to the product is less than 1% and the product does not require skin testing prior to use.

Human collagen

Cosmoderm (Inamed Corporation, Santa Barbara, CA), FDA approved in 2003, consists of collagen extracted and purified from tissue cultures of human foreskin fibroblast (Bauman 2004). Because the product is human derived there is virtually no risk of an immune response and patients therefore do not require pre-procedural skin testing. The collagen is suspended in PBS containing 0.3% lidocaine hydrochloride and the product is marketed in concentrations of 35 and 65 mg/ml (Cosmoderm I and II, respectively). Also a longer lasting variant is available in the form of Cosmoplast is cross-linked with glutaraldehyde for greater stability.

Cymetra (Life Cell Corp., Branchburg, NJ) is an intradermal injection product that is composed of cryofractured AlloDerm (Sclafani et al. 2002a). Cymetra is provided as a freeze-dried powder with an average particle size of 123 µm and is reconstituted through the rehydration of 330 mg in 1 ml of 1% lidocaine hydrochloride. Its effect last longer than Zyplast but shorter than AlloDerm, possibly due to a larger surface area.

Autologen (Collagenesis, Inc., Beverly, Mass.) is a dermal matrix dispersion obtained from autologous skin obtained from the patient during previous elective surgery (Fagien and Elson 2001). Dermalogen, from the same company, is a similar product except that the skin is obtained from tissue banks. The dermis is mechanically pulverised and solubilised with chemical modifiers to form a dispersion of predominantly native, type I collagen, traces of types III and VI collagen, elastin, fibronectin, chondroitin sulfate, and other proteoglycans. Autologen and Dermalogen persistence is comparable to Zyplast (Sclafani et al. 2000;Sclafani et al. 2002b). Due to the human origin both products do not cause an immune response and do not require pre-procedural skin testing. The major drawbacks, however, are the requirement of a previous surgical procedure to acquire skin and a processing time of 3 to 4 weeks (Autologen) and the theoretical risk of disease transmission (Dermalogen). Both products are currently not available.

Isologen (Isologen Technologies, Metuchen, NJ) is not a collagen filler but uses autologous fibroblast transplantation to provide collagen at the site of interest. Fibroblasts are obtained
from a 3 mm punch biopsy and grown for a period of 2 months to obtain a sufficient number of cells for a clinical effect (Watson et al. 1999).

5. Methods to control collagen architecture in vivo and in vitro: Engineering collagen conformation: density, direction, diameter

There are a wide variety of collagen substitutes, as have been documented, however to engineer a functional tissue with collagen, controlling the behaviour and architectural features of collagen in vitro will be necessary. Some of these mechanisms have been inspired by mechanisms in vivo, but the majority have derived from engineering principles derived from our understanding of the protein in question. Here we overview some novel approaches to controlling collagen architecture.

Collagen type I is used for 3D culture of cells, providing a biomimetic environment in which to study cell behaviour (Grinnell and Petroll 2010). Typically collagen scaffolds comprise of collagen hydrogels, which as the name suggests are mainly water. This generally means that the density of such scaffolds is inappropriate for modeling tissue matrix densities. These hydrogels are useful, however, in studying the interactions of cell-matrix, as cells are able to remodel the matrix into which they have been seeded, to orientate collagen fibrils, to control alignment of cells where strain is applied along an axis, and encourage specific behaviours of cells in response to alignment e.g. fusion of single myoblasts to form multi-nucleated fibres (Cheema et al. 2003). During this process the matrix is remodeled, and this tends to result in loss of water from the hydrogel, thus increasing the density of collagen.

Advances have been made to controllably increase the density of collagen scaffolds, with a recent application of controlled load to plastically compress (PC) standard collagen hydrogels to expel excess fluid and increase the collagen density (Brown et al. 2005). Application of this PC technology is very useful for in vitro tissue modeling as cell viability is retained in cells embedded within scaffolds undergoing PC, and the density increase (both for matrix and cells) is controllable and results in densities more biomimetic. At 11% collagen density, standard PC techniques bring scaffolds to in vivo levels of matrix density, however the mechanical properties of such scaffolds still fall far from those found in tissues. Further methods utilising PC technology have pushed these densities up to 30% and even higher (Abou-Neel et al. 2006). But what it lacks is the specific architecture for which a multi-disciplined approach to mimicking collagen architecture is required.

Despite the importance of collagen fibril diameter to the material properties of tissues, our basic understanding of its control is poor. Control of fibril diameter is distinct from fibrillogenesis, which is the emergence of the tertiary collagen protein structure.

Fibril modifying molecules, such as collagen types V and IX and proteoglycans such as decorin, are the main suggested mechanisms by which collagen fibril diameter is controlled in vivo, and these elements limit how large fibrils can grow in tissues such as cornea or tendon (Ameye and Young 2002; Ezura et al. 2000; Scott 1984). There is also an emerging understanding of how fibrils diameters can be increased, by using mechanical forces to apply cyclical loading of collagen containing gels, encouraging lateral fusion of fibrils, which is plausible when the quarter stagger patterns of the fibrils of collagen are in perfect register (Figure 1) (Cheema et al. 2007). This ‘register’ is most commonly identified as the banding pattern seen in transmission electron micrographs of native collagen fibrils. The need for banding pattern registration again lies in the short-range, non-covalent bonds presented between adjacent molecules, which drive fibril polymer formation. The bonding involved
during this proposed fusion of fibrils is likely to be identical to the ionic and hydrogen bonding thought to stabilise the quarter stagger molecular packing in the original fibril. Although this appears to be an engineering trick \textit{in vitro}, it is highly likely that such mechanical forces occur in any new tissue \textit{in vivo} under load. And importantly, the ability to control collagen fibril diameter without cells shows for the first time that mechanical forces \textit{in vivo} may help determine fibril diameter and that cell-free engineering of native collagen materials is possible. Using technologies and strategies to manipulate and control fibril diameter will be critical to engineering collagen proteins for suitable use as a scaffold.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{Fig. 1. a) Hypothesis for the mechanically mediated mechanism for collagen fibril anastomosis. [i] Collagen fibrils in contact. At points of fibril lateral contact there will be very few where adjacent fibrils in ‘surface charge’ register. [ii] Application of cyclical uniaxial tensile strain inevitably brings a proportion of fibrils into register. [iv] Fibrils in contact and in register will form stable anastomoses, resulting in thicker fibril populations. [v] Bonding for this would comprise non-covalent, ionic, hydrogen and hydrophobic linkages which also drive fibrillogenesis. Figure 1b. Collagen fibrils in Longitudinal section, showing banding pattern register in the parallel elements in a multiple fibril cluster, as the fibril elements appear to anastomose. Arrows indicate alignment of banding pattern between different fibrils, over this length there are three separate fibrils in register, flanked by only one fibril (right) and three fibrils out of register (left) (magnification bar = 700 nm). Figure adapted from Cheema \textit{et al.} 2007
\end{figure}

The alignment of collagen fibrils in scaffolds is a critical parameter for control of architectural features. Without mimicking this alignment found in tissues, it is not possible to build a biomimetic tissue. Methods used \textit{in vitro} to control alignment of collagen type I include magnetic alignment, interstitial directional fluid flow to control alignment and flow of collagen solution through microfluidic chambers during gelation (Elsdale and Bard 1972; Girton \textit{et al.} 1999; Guo and Kaufman 2007; Lee \textit{et al.} 2006; Ng and Swartz 2003; Ng and Swartz 2006). Elsdale and Bard were amongst the first groups able to align collagen. By simply setting a gel in a slanted chamber, and allowing interstitial fluid to flow downwards, collagen fibrils were observed to align along this fluid flow (Elsdale & Bard 1972). Tranquillo and colleagues have applied magnetic field to type I collagen scaffold, during gelation, and found that they collagen fibrils aligned along the plane in which the magnet was aligned (Girton, Dubey, & Tranquillo 1999). The majority of these alignment strategies have been applied to collagen hydrogels, however it is possible to align collagen fibrils in dense scaffolds using a similar fluid flow mechanism (Kureshi \textit{et al.} 2010). Recently both the
magnetic alignment and fluid-flow alignment methods have been applied together to controllable align collagen fibrils (Guo & Kaufman 2007). Electro-spinning, which is a method used to spin nano-and micro-diameter fibres into 3D meshes, is currently employed as a mechanism to compose 3D scaffolds using collagen and other natural proteins (Matthews et al. 2002). Collagen specifically retains its composition of polypeptide chains and even exhibits superficial D-Banding of fibrils following the electro-spinning process (Jhu et al. 2011). Such electro-spun scaffolds have been employed as tissue engineered substitutes for dermal tissue and muscle reconstruction (Jhu et al. 2011). The electro-spun material is still deficient in some of its mechanical properties, including tensile strength, and the cell-interaction with such materials still requires further investigation.

The methods described within this section will need to be critically used to generate the meso and micro-scale architecture required to mimic tissues. There are limitations to each of these methods and further research into how to finely control collagen protein architecture is required. An example is how to control the bimodal distribution of fibril diameters within native tissues. Currently strategies rely mainly on increasing fibril diameter, for example by application of cyclical load, we are as yet unable to restrict fibril diameter in 3D collagen gels. Even with cyclical loading, we are only able to apply a broad loading regime to all the fibrils, and not select a population to increase, to allow for the typical bi-modal distribution. Further complications arise as cells often need to be embedded within 3D scaffolds as they are being cast, this means that making such engineering parameters cell-friendly will be critical to the ultimate success of an engineered tissue.

6. Problems with matrix-cell-interaction

One of the major obstacles in using scaffold materials into which cells are seeded, is the loss of cell directed control of matrix architecture, specifically protein architecture. Culturing cells in 3D collagen hydro-gels allows for cells to interact and remodel the matrix, but there are limitations to how accurately cell-matrix interaction in vivo can be mimicked (Grinnell & Petroll, 2010). It is difficult to simulate the force applied in vivo as a tissue develops or repairs, often multiple cell types and multiple matrix proteins are involved in the process, and this is time consuming to recapitulate in vitro. By engineering architecture is a speedy manner, we remove the cell-interactive component, and we may also be eliminating some of the cues necessary for cells to also mature and/or differentiate along with the protein architecture. As our models become progressively more tissue like, this interaction will need to be addressed.

Cell loading itself has an affect on cell-matrix interaction and matrix remodelling (Cheema et al. 2003). Compliant 3D collagen hydro-gels translate force to cells embedded within the scaffold very well, however as the collagen matrix stiffens and remolds, less force is translated to the embedded cells, primarily due to stress-shielding by the stiffer matrix. Further studies are required to dissect out this iterative process of matrix re-modelling with cell response, and while possible to study in simple single cell type and single matrix cultures in vitro, is much more difficult to decipher in a tissue. Overarching all of this is the adaptive response of tissues, which renders the tissue able to adapt to changing mechanical requirements, environment, repair etc. In an animal, growth and repair of tissues requires a constant degree of adaptation, which is mainly orchestrated by the resident cells. These cells control protein deposition, and the architecture is then directed by the imposition of mechanical loading by the tissue and resident cells. This iterative process is difficult to define within the tissue, due to the presence of multiple cell
types, multiple proteins, interaction with surrounding tissues, complex mechanical loading and stress, and variance with age and degree of re-modelling.

Engineering functional collagen-based tissues, whilst trying to emulate all of these processes, and allowing for how they may further re-model such a scaffold is a challenge. Further research into the biological mechanisms controlling tissue architecture will help us develop more successful 3D implants.

7. Conclusions

Being the dominant protein of the majority of tissues of the body, the architecture and packing of collagen needs to be controlled is we are to successfully engineer tissues in vitro. There are many currently available collagen scaffold materials, for use in vivo, as replacement skin, tissue fillers and artificial vascular structures, but the best of these have relied upon retaining the original architecture of the collagen from tissues. By understanding how this protein is modified and packed in vivo, by cells, mechanical load and other matrix proteins, we can apply these procedures to predictably control collagen architecture. Without this level of controlled engineering of collagen protein for scaffold manufacture, it is unlikely we will successfully engineer scaffolds with the appropriate mechanical properties, to mimic native tissue mechanics.

There has been a significant drive to engineer the more dominant protein components found within matrix-rich tissues, but controlling the architectural parameters of more minor protein components is also critical, and getting these processes to work in synchrony remains a challenge. This control over tissue architecture needs to be done without compromising on cell viability, cell action and appropriate cell differentiation.

Using native proteins has both benefits, due to the biomimicry of protein motifs and structural elements, and pitfalls compared to manufacturing synthetic polymers as scaffold materials. Synthetic polymers are man-made and engineered to precisely fulfil the required mechanical properties of any implant, but they lack the native cell-attachment motifs. Controlling the architecture, in vitro, of native proteins, including predominantly collagen, holds the key to the successful engineering of biomimetic, native protein based implants and constructs.

8. References

Tissue-Engineered Extracellular Matrices (ECMs) as Adjuvant Scaffolds for Endovascular Aneurysmal Repair (EVAR)

Anthony Callanan, Niall F. Davis, Michael T. Walsh and Tim M. McGloughlin
Centre for Applied Biomedical Engineering Research (CABER) and MSSI, University of Limerick, Castletroy, Co. Limerick, Ireland

1. Introduction

Abdominal aortic aneurysms (AAA) are permanent, irreversible, localised dilatations of the aorta. Usually, they develop as a result of a progressive localised weakness within the vessel wall. They typically occur below the level of the renal arteries and have a high propensity for rupture. In fact, ruptured AAAs account for approximately 8,000 and 15,000 deaths in the United Kingdom (UK) and United States of America (USA) respectively on an annual basis (Sakalihasan et al. 2005, Thompson 2003, Vorp and Vande Geest 2005). Risk factors for their development include male gender, age >65 and a history of smoking. Other associated risk factors are connective tissue disorders that typically have a genetic predisposition, syphilitic infections and cystic medial necrosis. Currently, there are two surgical treatments for AAA; the traditional open repair and a minimally invasive procedure known as endovascular aneurysm repair (EVAR) (Kamineni and Heuser 2004, Parodi et al. 1991, Sakalihasan et al. 2005). The endovascular technique has been widely applied in clinical practice, however important limitations persist (Egelhoff et al. 1999, Kamineni and Heuser 2004, Parodi et al. 1991). Among these limitations are device migration, endoleaks, and thrombotic occlusion. It has been suggested that tissue-engineered xenografts may play a role for preventing these complications in EVAR. In the present chapter we discuss limitations of stent-grafts deployed in the EVAR procedure. We place particular emphasis on tissue-engineered extracellular matrices (ECMs) as adjuvant scaffolds for optimisation of the EVAR procedure.

2. Aetiology of aneurysms

The arterial wall is primarily composed of 3 layers (or tunicae) that surround the luminal cavity as illustrated in Fig. 1. The inner layer (or tunica intima) consists of a monolayer of endothelial cells. A thin membrane known as the elastica interna separates the tunica intima from the tunica media and the tunica media itself consists of concentric layers of smooth muscle cells interwoven between networks of connective tissue. The tunica media is separated from the outer tunica adventitia by the elastica externa and adventitial
constituents include collagen and interspersed fibroblasts. Elastin is the predominant tissue within the aorta and it functions as the principal load bearing element of the aortic wall. During aneurysm formation degradation of elastin occurs along the walls of the aorta (Raghavan et al. 2005). It is widely believed that degradation of elastin may promote an inflammatory response within the wall leading to weakened tissue, abnormal remodelling responses and subsequent AAA development.

Fig. 1. Histological structure of arterial wall

Currently, aneurysms are classified relative to their shape and location. Fusiform aneurysms are the most common and they typically occur due to a circumferential weakness along an extended portion of the aorta with the weakened portion appearing as a symmetrical bulge. In contrast saccular aneurysms frequently form on one side of the aorta and are asymmetrical in their nature. Finally, pseudoaneurysms usually occur as a result of trauma to the aortic wall that causes all 3 layers of the vessel to separate.

3. Surgical treatment options for AAA

3.1 Open repair
Currently there are two vascular procedures available for the treatment of AAA; an open procedure and minimally invasive surgery. Open surgery involves a midline incision to gain access to the aneurysmal site. Intraoperatively, the aorta and iliac arteries are exposed and

Fig. 2. Open repair of abdominal aortic aneurysm (AAA) (http://www.musc.edu/radiology/interventional/index.htm)
cross-clamped prior to incising the wall of the AAA. Intraluminal thrombi are removed and a synthetic graft is sutured in situ before the aneurysm is closed over the graft as illustrated in Fig. 2. Complications associated with the open method include infection, increased inpatient stay and a predisposition to acute renal failure.

3.2 Minimally invasive approaches

The minimally invasive approach involves the use of a stent graft device as illustrated in Fig 3 and this method is referred to as ‘EndoVascular Aneurysm Repair (EVAR)’. Importantly, EVAR is associated with a significant decrease in mortality and reduced duration of inpatient stay when compared to open repair; however EVAR has additional procedural risks.

![EVAR diagram](http://www.musc.edu/radiology/interventional/index.htm)

3.2.1 Complications associated with EVAR

Intraoperative complications include vascular injury during initial catheterisation and stent deployment and postoperative complications associated with EVAR include persistent blood flow outside the graft that can result in increased pressure on the aneurysmal sac and a subsequent endoleak. To date, endoleaks have been classified into 5 different subtypes and types 1-5 are illustrated in table. 1

<table>
<thead>
<tr>
<th>Endoleak Type</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Occurs at proximal or distal end of the stent-graft where it attaches to vessel wall</td>
</tr>
<tr>
<td>2</td>
<td>Precipitated by collateral flow from mesenteric or lumbar arteries</td>
</tr>
<tr>
<td>3</td>
<td>Tear in graft fabric and blood leaks between modular components of stent graft</td>
</tr>
<tr>
<td>4</td>
<td>Leak occurs through pores within the graft’s fabric</td>
</tr>
<tr>
<td>5</td>
<td>Occurs as a result of ‘intra-sac’ pressurisation and is commonly referred to as endotension</td>
</tr>
</tbody>
</table>

Table 1. Endoleaks type 1-5 and their associated clinical features (Greenhalgh and Powell 2008)
Typically, endoleaks that are classified as type 3 or type 4 resolve spontaneously; however endoleaks classified as type 1 or type 2 often require surgical intervention (Greenhalgh and Powell 2008). Treatment options for type 5 remain controversial as surgeons remain divided on advocating immediate surgical repair versus a more conservative surveillance approach (Mennander et al. 2005, Veith et al. 2002).

Migration of the stent-graft following the EVAR procedure is another complication associated with considerable postoperative morbidity. Clinically, migration can be defined as ≥5mm of distal movement of the stent-graft from its attachment site. Usually migration can be caused by inadequate attachment of the graft to the proximal neck of the aneurysm or by morphological changes within the neck of the vessel. Postoperative complications include a widening of the aneurysm that may result in decreased radial force exerted by the proximal portion of the stent in vivo. Radial force is an important fixation method in stent-grafts without hooks or barbs and widening of the neck inevitably predisposes these devices to migration. Less frequent complications include stenosis or occlusion of the graft or distal vessels.

On account of these complications only 5 stent-grafts with FDA approval are currently available. These are the AneuRx® and Talent® from Medtronic, the Zenith® from Cook, the Gore Excluder® and the Endologix Powerlink® (Endovascular Today, 2009). Their success is also limited by a high incidence of endoleaks and stent migration as illustrated in Table 2. Typically, the majority of stent migration failures occur after one year. A reliable method that prevents these complications from occurring is an attractive option.

<table>
<thead>
<tr>
<th>Device</th>
<th>Type</th>
<th>Stent Material</th>
<th>Graft Fabric</th>
<th>Stent type</th>
<th>Hooks or Barbs</th>
<th>Documented Endoleak</th>
<th>Documented Migration</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>AneuRx</td>
<td>Modular external</td>
<td>Nitinol external</td>
<td>Dacron</td>
<td>Nitinol skeleton</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>(Zarins et al. 2001)</td>
</tr>
<tr>
<td>Talent</td>
<td>Modular self-expanding internal</td>
<td>Nitinol</td>
<td>Dacron</td>
<td>Multinitinol stents (Bare)</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>(Criado et al. 2003)</td>
</tr>
<tr>
<td>Zenith</td>
<td>Modular</td>
<td>Stainless steel</td>
<td>Dacron</td>
<td>Z-stents</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>(Greenberg 2003)</td>
</tr>
<tr>
<td>Gore Excluder</td>
<td>Unitary external tube type and internal</td>
<td>Nitinol</td>
<td>Teflon ePTFE</td>
<td>Spiral shape</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>(Bush et al. 2001)</td>
</tr>
<tr>
<td>Endologix PowerLink</td>
<td>Unitary Body internal stent type</td>
<td>Cobalt-Chromium Alloy</td>
<td>ePTFE</td>
<td>Single wire Z-shaped</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>(Wang et al. 2008)</td>
</tr>
</tbody>
</table>

Table 2. Stent graft devices for EVAR: Their structural properties and associated complications
3.3 Possible method for improvement of EVAR

Previously, investigations for improving the stent-graft design have predominantly focussed on the mechanical aspects of the stent. In general, most of these investigations have failed and a reliable solution remains elusive. Recent investigations (Brown et al. 2006, Schoder et al., 2004, Niyyati et al. 2005, Yavuz et al. 2006) suggest that tissue-engineered extracellular matrix (ECM) scaffolds derived from xenogenic sources may have the potential to overcome limitations that are associated with traditional mechanical solutions.

4. Tissue-engineered Extracellular matrix (ECM) scaffolds

Extracellular matrices (ECMs) are biological scaffolds usually derived from xenogenic sources. They are acellular in nature and induce a host derived tissue-remodelling response after implantation while undergoing simultaneous degradation processes (Davis et al., 2010). Therefore, they may provide an attractive alternative as suitable biomaterials for improving EVAR treatment of AAA. Urinary bladder matrix (UBM) and small intestine submucosa (SIS) are two common ECM scaffolds of porcine origin that have had good clinical outcomes after surgical implantation across numerous subspecialties. These biomaterials are prepared via numerous physical, chemical and enzymatic processes.

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Application</th>
<th>Animal Model</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.F. Badylak (1989)</td>
<td>Large diameter vascular graft</td>
<td>Canine</td>
<td>No thrombus formation and no intimal hyperplasia after 44 weeks. No endothelialisation of the scaffold and greater stiffness within the scaffold compared to artery</td>
</tr>
<tr>
<td>D.J. Schultz (2002)</td>
<td>Reparation of enterocutaneous fistula</td>
<td>Human</td>
<td>No data available</td>
</tr>
<tr>
<td>S.G. de la Fuente (2002)</td>
<td>Gastric reparation</td>
<td>Rat</td>
<td>Regeneration of gastric mucosa after 3 weeks</td>
</tr>
<tr>
<td>M. Chen (2001)</td>
<td>Small intestine</td>
<td>Canine</td>
<td>Tubular failure secondary to obstruction and leakage</td>
</tr>
<tr>
<td>M.A. Cobb (1999)</td>
<td>Dura mater substitute</td>
<td>Canine</td>
<td>Complete resorption after 60 days</td>
</tr>
<tr>
<td>S.F. Badylak (2001)</td>
<td>Body wall repair</td>
<td>Canine</td>
<td>Preoperative tensile strength achieved after 24 months</td>
</tr>
<tr>
<td>T.G. Smith (2002)</td>
<td>Reparation of ureteral defect</td>
<td>Porcine</td>
<td>SIS graft replaced with urothelium and smooth muscle after 9 weeks</td>
</tr>
<tr>
<td>B.P. Kropp (1995)</td>
<td>Urinary bladder regeneration</td>
<td>Rat</td>
<td>Urothelium, lamina propria and smooth muscle replaced within 3 weeks</td>
</tr>
</tbody>
</table>

Table 3. Multisystemic applications for SIS and associated remodelling duration after in vivo implantation
Extensive experimental evaluation of SIS and UBM materials has been undertaken; examining sterilisation effects, cell interactions, cell growth effects, gene expression, mechanical properties, processing effects, suture retention effects and repeatability issues associated with their clinical applications (Ahn et al. 2007, Cimini et al. 2005, Freytes et al. 2005, Freytes et al. 2008, Gilbert et al. 2006, Hodde et al. 2002, Roeder et al. 1999, Sellaro et al. 2007, Teebken et al. 2000). These characterisation methods have led to a greater understanding of an ECM’s biological, structural and mechanical properties. Clinical applications of ECM scaffolds are described in Table 3. Influences such as stent interaction, compliance differences, aortic endothelial cell interactions and flow effects, have not been fully characterised on ECMs using in vitro or in vivo experimental approaches. Although UBM has been utilised to a lesser extent compared to SIS, it has been successfully applied for the treatment of dysplastic oesophageal tissue with excellent patency rates during the follow up period (Badylak et al., 2005). In addition, UBM has been applied for effectively treating strictures of the trachea with no evidence of stenosis or tracheomalacia during the follow up period (Gilbert et al. 2008). Finally, UBM has also been effectively applied for reparation of the thoracic wall in a canine model (Gilbert et al. 2007).

4.1 Constituents and preparation of ECMs

The major constituents found within mammalian ECMs are collagen, glycoproteins, glycosaminoglycans (GAGs) and growth factors as illustrated in Table 4. These constituents provide structural, functional, adhesive and stimulatory functions to their surrounding cells enabling them to survive and proliferate (Badylak et al. 2009, Baldwin 1996, Laurie et al. 1989). Naturally, the transition phase of an ECM scaffold from intact mammalian tissue to viable donor xenograft material requires several processing steps. Initially, the native tissue is manually separated from unwanted tissue structures. Tissue decellularisation is achieved through a combination of sonication, agitation, freezing and thawing processes (Badylak et al. 2009). These treatments disrupt the cell membrane and facilitate the removal of intracellular remnants. During the decellularisation process it is of paramount importance to preserve as many mechanical and biological properties of the donor ECM as possible. Disruption of collagen architecture can decrease the mechanical strength of the scaffold, removal of GAGs adversely affect its viscoelastic behaviour and the absence of growth factors will decrease the scaffold’s bioinductive properties (Lovekamp et al. 2006). After the xenograft is decellularised it is then sterilised by exposure to irradiation or ethylene oxide (Rosario et al. 2008).

To date, porcine SIS and porcine UBM have been strongly favoured as potential donor scaffolds for many different surgical subspecialties. Their harvesting sites differ; however both have had a considerable degree of success when applied clinically. SIS is harvested from the small intestine and UBM originates from the urinary bladder. Their collagen components also differ to a small extent after decellularisation and sterilisation. The decellularised SIS scaffold is primarily composed of collagen type 1 (Badylak et al. 2009) with smaller amounts of collagen types 3, 4, 5, 6 also present (Badylak SF 1995). In contrast, UBM is rich in collagen types 3, 4 and 7. UBM possess an intact basement membrane which has many characteristics that favour its application to the vasculature. Importantly, a basement membrane may support the growth and differentiation of a confluent endothelial cell layer on the luminal surface of the scaffold. Different characteristics of SIS and UBM are compared in Table 5.
Tissue-Engineered Extracellular Matrices (ECMs) as Adjuvant Scaffolds for Endovascular Aneurysmal Repair (EVAR)

<table>
<thead>
<tr>
<th>Constituents</th>
<th>Features</th>
</tr>
</thead>
</table>
| Collagen | • Most abundant protein within ECMs
 • More than 20 different types have been identified
 • Provides distinct mechanical and physical properties to the ECM |
| Laminin | • Large adhesion glycoprotein
 • Involved in cell and tissue differentiation
 • Promotes tissue development and angiogenesis |
| Fibronectin | • Extracellular glycoprotein
 • Promotes host biocompatibility
 • Induces cell adhesion by binding to membrane-spanning receptor proteins known as integrins |
| Glycosaminoglycans | • Mucopolysaccharides
 • Bind covalently to a protein core to form a proteoglycan molecule
 • Act as a reservoir when cells stop growth factor production
 • Enables ECMs to store growth factors that may be used during tissue regeneration |
| Growth Factors | • Present in small quantities within ECMs
 • Naturally occurring substances capable of stimulating cellular growth, proliferation and differentiation |

Table 4. Constituents of ECM scaffolds and their associated biological features

<table>
<thead>
<tr>
<th>Extracellular Matrix</th>
<th>Characteristics</th>
</tr>
</thead>
</table>
| Small Intestinal Submucosa (SIS) | • Derived from porcine jejunum
 • Primarily composed of the submucosal layer and the stratum compactum of the tunica mucosa
 • Mainly consists of type 1 collagen |
| Urinary Bladder Matrix (UBM) | • Derived from the porcine urinary bladder
 • Possesses an intact basement membrane consisting of collagen types 4 and 7 |

Table 5. Differentiating the characteristics of SIS from UBM

4.2 Immunogenic response after implantation

Theoretically, an implanted ECM should not elicit an immediate or delayed immune response due to its acellular and avascular nature (Allman et al. 2001, Ho et al. 2004, Sandusky et al. 1992). However, we know that elimination of all nuclear materials and cell membrane products is almost impossible despite extensive measures taken during the decellularisation process. Therefore, it is expected that the recipient should mount an immune response against the graft’s cell remnants and arguably, against the intact
xenogenic proteins. This hypothesis has been extensively studied by assessing the host’s cell-mediated T-helper 1 (rejection) and T-helper 2 (accommodation) immune responses to implanted xenografts (Strom et al. 1996, Zhai et al. 1999). Results from preliminary studies on mice are favourable, as the implanted SIS scaffold elicits an immune lymphocytic response that is predominately Th2-like (Allman et al. 2001). The Th-2 pathway stimulates the production of interleukins IL-4, IL-5, IL-6 and IL-10. These interleukins promote graft acceptance and prevent the activation of neighbouring inflammatory macrophages (Bach et al. 1997, Chen and Field 1995). Activation of the Th2 pathway also promotes effective tissue remodelling, structural repair and functional recovery of the injured tissue after graft acceptance (Piterina AV 2009). Undoubtedly, activation of this humoral response is encouraging as activation of the alternate lymphocytic pathway (i.e. Th1) produces an acute inflammatory reaction. Cytokines such as IL-2, interferon (IFN) gamma and tumour necrosis factor (TNF) beta activate neighbouring macrophages and stimulate the differentiation of CD 8+ cells to a cytotoxic phenotype. This host derived inflammatory response ultimately leads to xenogenic graft rejection (Abbas et al. 1996, Matsumiya et al. 1994).

The terminal alpha 1,3 galactose epitope (Gal-epitope) is present in cell membranes of all mammals except humans and concerns over the epitope’s inflammatory potential exist (Galili 1993, Koren et al. 1994). In humans this epitope (i.e. antigenic determinant) is recognised by IgM, IgG and IgA antibodies that mediate hyperacute or delayed graft rejection through complement fixation and antibody dependent cell mediated cytotoxicity (Good et al. 1992, Koren et al. 1994, Schussler et al. 2001). The potential for complement activation has been investigated with results suggesting that it does not occur when the graft is implanted (McPherson et al. 2000). Researchers have attributed the absence of host immune responses to the distribution of the epitope within the xenograft and to the minute quantities that are present (McPherson et al. 2000). In whole organ transplantation levels of the Gal-epitope are expectantly higher and these high levels have been linked to chronic graft rejection (Schussler et al. 2001). Currently, methods of eliminating the epitope prior to scaffold implantation are under investigation and it has been suggested that treatment of the xenogenic scaffold with alpha galactosidase during the decellularisation process is a potential solution. Should clinical concerns persist it might also be possible to harvest the graft material from transgenic Gal-knockout pigs that are bred specifically for tissue engineering purposes.

The graft’s response to potential host derived pathogenic micro-organisms has also raised concerns among vascular surgeons as graft infection is associated with considerably morbidity. The xenograft’s response to Gram-positive and Gram-negative bacteria has been evaluated and compared to conventional synthetic graft materials (i.e. polytetrafluoroethylene) in animal studies (Badylak et al. 2003). Interestingly, xenogenic ECM materials were resistant to persistant bacterial infection after deliberate contamination at the graft implantation site. This has been attributed to the presence of multiple low-molecular weight peptides that survive the decellularisation and sterilisation processes (Brennan et al. 2006, Sarikaya et al. 2002). These peptides demonstrate bacteriostatic activity against micro-organisms and inhibit bacterial proliferation for up to 12 hours after initial exposure. Their antimicrobial activity protects the remodelling site from circulating pathogens (Brennan et al. 2006). However, their origin and structural homology to natural antimicrobial peptides (AMP) and defensins are important aspects that have not been
clarified to date. Their spectrum of activity and pathways of incorporation are also poorly understood. These factors need to be thoroughly investigated so the extent of their antibacterial role can be clearly established.

4.3 Remodelling and degradation

Biological growth factors found within SIS and UBM are key contributors to cell growth and tissue regeneration (Babensee et al. 2000, Tabata 2004, Tabata 2005). Proteoglycans facilitate their survival during matrix decellularisation and sterilisation by functioning as storage vessels (Hodde et al. 2005). As the matrix is implanted growth factors are released stimulating angiogenesis, host cell infiltration and mitogenesis (Table 6). Matrix degradation coincides with this and the degradation process is influenced by host derived enzymatic and cellular processes (Badylak 2007). During the degradation process growth factors dissociate from their binding proteins and are activated to promote tissue neovascularisation. Matrix degradation and growth factor activation continues until the ECM scaffold is completely replaced by host cells (Clyne and Edelman 2009).

<table>
<thead>
<tr>
<th>Growth Factor</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vascular Endothelial Growth Factor (VEGF)</td>
<td>Regulates angiogenesis by controlling blood vessel formation and growth</td>
</tr>
<tr>
<td>Platelet Derived Growth Factor (PDGF)</td>
<td>Deposition of granulation tissue and stimulation of angiogenesis</td>
</tr>
<tr>
<td>Bone Morphogenetic Protein (BMP)</td>
<td>Stimulates formation of bone and cartilage</td>
</tr>
<tr>
<td>Keratinocyte Growth Factor (KGF)</td>
<td>Epithelialisation of wounds during healing</td>
</tr>
<tr>
<td>Fibroblast Growth Factor (FGF)</td>
<td>Initiates development of fibroblasts and endothelial cells during wound healing</td>
</tr>
<tr>
<td>Transforming Growth Factor (TGF-beta)</td>
<td>Reorganization of matrix molecules to improve dermal architecture and reduce scarring</td>
</tr>
</tbody>
</table>

Table 6. Bioinductive growth factors found within the ECMs and their functions

Common growth factors that influence tissue remodelling responses include ‘Vascular Endothelial Cell Growth Factor’ (VEGF) and ‘basic Fibroblast Growth Factor (bFGF)’ as illustrated in Table 6. VEGF has been shown to stimulate angiogenesis, vascular permeability and endothelial cell proliferation and migration while bFGF encourages wound healing (Ferrara et al. 1992). Other retained growth factors within the ECM include keratinocyte growth factor (KGF) which mediates epithelial cell proliferation and differentiation (Alpdogan et al. 2006) and platelet-derived growth factor-beta-polypeptide (PDGF-BB) which promotes chemotaxis, proliferation, angiogenesis and tissue remodelling. It appears that the strong remodelling effect exerted by biological growth factors is accentuated by cryptic peptides that are also released from the implanted scaffold during the degradation process. These peptides are involved in recruiting circulating bone-marrow derived cells that can partake in long-term tissue remodelling processes (S. F. Badylak et al. 2001, Zantop et al. 2006).

An ability to be completely degraded while stimulating a native remodelling response over a relatively short period of time is perhaps ECM’s most attractive feature (Badylak et al.
These impermanent properties were investigated by determining the rates of in vivo graft degradation and excretion in canine models during the nineties (Badylak et al. 1998, Kropp et al. 1995, Kropp et al. 1996a, Kropp et al. 1996b, Vaught et al. 1996). Studies show that xenogenic ECMs are rapidly degraded and absorbed when implanted in the genitourinary tract with up to 90% of the scaffold being replaced by host tissue within 28 days (Badylak et al. 1998, Record et al. 2001). Generally, excretion rates of all ECMs vary between 28 and 90 days depending on the type of tissue that is being remodelled (Allman et al. 2001, Badylak et al. 1998, Record et al. 2001). Naturally, the process may be prolonged when multiple layers of xenogenic scaffold are implanted (e.g. 90-120 days). Shortly after the degradation process the ECM briefly enters the bloodstream and is excreted via the kidneys through glomerular filtration. This has been shown by measuring quantitative studies of 14C-labelled SIS after augmentation cystoplasty in canine models (Record et al. 2001). More than 50% of the scaffold was removed from the implantation site at 28 days and almost 100% of the scaffold was replaced by 100 days. During the follow up period 95% of degradation products were found in the host’s urine (Badylak et al. 2000, Record et al. 2001).

4.4 Mechanical properties

ECMs’ remodelling capacity is dependent on the preservation of bioinductive growth factors during the sterilisation process. Similarly, its mechanical effectiveness is largely dependent on preserving intact collagenous arrangements and adhesive glycoproteins during this process. This is highlighted by the scaffold’s mechanical response to different sterilisation techniques. Studies have shown that the graft’s uniaxial and biaxial mechanical properties are significantly reduced after exposure to gamma irradiation, electron beam irradiation and ethylene oxide (Freytes et al. 2008). The reduction in mechanical strength is dose-dependent and this emphasises the preparation difficulties encountered between graft sterilisation and constituent preservation techniques (Gouk et al. 2008).

Short-term mechanical limitations are also present during the initial remodelling response (Davis et al. 2011). Typically, both SIS and UBM show a decrease in mechanical strength after implantation that is caused by a temporal imbalance between the rate of scaffold degradation and the rate of infiltrating host cell deposition (Gilbert et al. 2007). While the rapid degradation rate of implanted genitourinary ECMs is often lauded, one must consider the temporal mismatch that occurs between xenograft degradation and host-derived matrix deposition. One study demonstrated a 30-fold decrease in bladder compliance (in comparison to the pre-operative status) after canine urinary bladder was replaced with SIS (Kropp et al. 1996b).

Short-term strength limitations have been addressed by increasing the number of layers within the implanted scaffold as a single layer of implanted SIS has proved insufficient for most load bearing organs. The graft’s mechanical strength increases by 150% simply by increasing the number of layers of SIS layers from 2 to 4 (Freytes et al. 2004). Importantly, the imbalance between matrix degradation and deposition is temporary in nature and is only relevant until the host’s remodelling capability equates-to or surpasses the ECM’s degradation rate. A rapid remodelling response can occur once infiltrating host cells self-organise and begin producing their own ECM. This results in a time dependent return to expected mechanical strength and site-appropriate mechanical behaviour after xenogenic implantation (S. Badylak et al. 2001, Badylak et al. 2005, Liang et al. 2006).
5. ECMs as potential vascular grafts

A number of studies have investigated SIS’s potential as a tissue-engineered vascular substitute. Initially, Badylak et al. replaced a segment of canine aorta in 1989 with a tubularised SIS scaffold (Badylak et al. 1989). Results from this preliminary study demonstrated patency of the aorta during the follow up period. Importantly, adverse effects such as infection, thrombosis, intimal hyperplasia and hypertension were avoided. Histological assessment after follow up revealed organised, dense non-thrombogenic collagenous connective tissue. However, there was no evidence of endothelial cell growth on the luminal surface of the SIS graft after 44 weeks. The authors concluded by suggesting that SIS merits further investigation as a large diameter graft for aortic replacement purposes. Consequently, SIS was subsequently investigated as a potential small diameter graft in a canine model (Lantz et al., 1990) where the biological scaffold replaced the carotid and femoral artery (Lantz et al. 1990). Like Badylak et al., results from this study indicated no evidence of endothelial growth on the scaffold’s luminal surface. Luminal and abluminal surfaces of the scaffold were comprised of dense organised collagenous tissue, with no evidence of infection, propagating thrombus or intimal hyperplasia.

A more comprehensive study by Sandusky et al. also evaluated SIS as a small calibre vascular graft for carotid arteries in canine models in 1992 (Sandusky et al. 1992). A sample size of 24 canine models was included in this study over a period of 180 days where gold standard saphenous vein grafts were directly compared with SIS scaffolds. Results from this study revealed endothelialisation of the SIS scaffold with transmural growth of capillaries and infiltrating smooth muscle cells from the host. In addition, no significant differences were noted between saphenous vein grafts and SIS scaffolds when intimal thickening was compared in this study. In 1995 Hiles et al. assessed the mechanical properties of SIS as a potential aortic graft in a canine model (Hiles et al. 1995). Their study demonstrated that host tissue completely replaced the SIS scaffold and that the remodelled scaffold had appropriate physical and mechanical properties to adequately function in a vascular system. However, compliance values from the remodelled SIS construct were three-fold lower than compliance values of a normal thoracic aorta (Hiles et al. 1995).

Another study by Roeder et al. also investigated the compliance, burst pressure and remodelling effects of SIS as a small diameter vascular graft (Roeder et al. 2001). Findings from their study demonstrated a degree of tissue remodelling with improved compliance at the site of the implanted SIS scaffold. The authors concluded by suggesting that mechanical properties of the remodelled SIS scaffolds were similar to the vessel of the animal model that was replaced. Ovine models have also been utilised to assess SIS’s potential as a small diameter vascular graft (Pavcnik et al. 2009). One study, evaluated the implanted SIS scaffolds with angiography during their follow up period. Angiographic assessment of implanted SIS scaffold revealed a multitude of complications that included stenosis of the anastamotic site, aortic dissections, recurrent aneurysmal formation and diffuse dilatations of the implanted scaffold.

Although SIS has been extensively investigated as a potential vascular replacement scaffold it is interesting to note that UBM has never been previously investigated for this purpose. Encouragingly, more recent studies have suggested that UBM merits further investigation as a potential vascular substitute (Badylak 2005, Brown et al. 2006). After the preparation process UBM can be manipulated into many different physiological configurations. Its
malleable nature in conjunction with its biocompatibility may provide researchers with an alternative ECM scaffold for vascular replacement purposes.

6. Justification of ECMs in EVAR

In EVAR failure of the implanted stent most frequently occurs one year after surgical implantation as discussed in section 3.2.1. However, ECMs take approximately 3 months to induce a constructive tissue remodelling effect (Badyak 2005, Gilbert et al. 2008). Therefore, a tissue-engineered ECM is likely to reabsorb within this 12 month timeframe and provide a secure seal that could potentially prevent the complication of stent migration.

6.1 Disadvantages of biodegradable polymers

The potential for biodegradable polymers as potential vascular replacements in EVAR stent-grafts has previously been investigated. Poly D, L-lactic-glycolic acid co-polymer (PLGA) and Poly ε-caprolactone (PCL) are 2 polymers that have been assessed in vivo and in vitro as potential vascular substitutes. In one study the degradation rates of both polymers were assessed and compared in vivo and in vitro. Results demonstrated that degradation rates of both scaffolds occurred at a more rapid rate in vivo compared to in vitro. Hydrolysis of PLGA and PCL polymers were influenced by the concentration of carboxylic acid end-groups. Therefore, it appears that degradation products of both polymers may serve as catalysts for reactions in static conditions, which are likely to accelerate degradation. This study suggests that by-products of the initial degradation influence the effect of cell infiltration (Sung et al. 2005). Therefore, these initial studies imply that biodegradable polymers are unsuitable in the setting of EVAR as they are associated with undesirable by-products that adversely affect their degradation rate (Sung et al. 2005).

6.2 Configurations of ECM stent grafts for EVAR

SIS has been investigated in a stented environment on the abdominal aorta of ovine models where remodelling of the SIS scaffold onto the aortic wall was assessed by Yamada et al. (Yamada et al. 2001). In this study the SIS stent graft was manufactured by sandwiching the stent between two sheets of SIS as illustrated in Fig. 4. Results demonstrated no evidence of stenosis and no evidence of endoleak formation around the implanted stent grafts. Histological assessment showed incorporation of the graft into the wall of the aorta with a dense neo-intima replacing the SIS scaffold. Endothelialisation occurred in areas where the graft was in direct contact with the aortic wall and central portions of the graft were partially endothelialised after the 12 week follow up period. A similar study by Noishiki et al., 2001 reported comparable results to Yamada et al. with a partial endothelium forming on the implanted SIS hybrid stent graft (Noishiki et al. 2001).

After these promising results the performance of SIS covered endografts (stent devices) implanted into ovine femoral arteries was investigated by Nakata et al. in 2003. The study compared the performance of the SIS covered endografts to non-covered nitinol stents and PTFE covered endografts. In their conclusion the authors suggest that SIS and bare metal nitinol stents display similar attachment features to the aortic wall and performed superior to a poly-tetra-fluoro-ethylene (PTFE) covered stent also included in the study (Nakata et al. 2003). It should also be noted that both SIS endografts and bare nitinol stent exhibited eccentric intimal hyperplasia with eventual occlusion of the stented vessel during the follow
up period. A study by Schoder et al. also investigated SIS in the setting of EVAR repair (Schoder et al. 2004). In this study the SIS scaffold was suspended against the wall of the aorta as illustrated in Fig. 5. Results from this study suggest that this deployment method is promising for the prevention of type 2 endoleaks. In addition, results also demonstrated evidence of a host derived tissue remodelling response during the follow up period. A detailed analysis of the remodelling response revealed an established endothelium along the distal and proximal regions of the scaffold with poor endothelialisation of its central portion.

Fig. 4. Sandwiched stent composed of SIS (Yamada et al., 2001)

Fig. 5. SIS stent graft deployed inside an AAA (Schoder et al., 2004)

In 2005 Niyyati et al. assessed the potential for SIS as an intrahepatic protocaval shunt. Only one device remained functional in 6 animals after a 14 day experimental time period (Niyyati et al. 2005). Intuitively, the authors discouraged SIS in this setting. The configured SIS stent device and the implanted SIS stent are illustrated in Fig. 6 A and B. Histological assessment of the luminal surface after follow up demonstrated a smooth neointima on the surface of the functional stent.
A more recent study investigated the effects of different stent grafts on the portal vein of canine models (Ishii et al., 2005). In this study, four different stents were assessed, bare metal stent, PTFE covered stent, Dacron covered stent and an SIS covered stent. The study concluded that SIS covered stents confer no advantages in comparison to other conventional stent grafts. In fact PTFE consistently outperformed the other 3 stents and was recommended as the most suitable stent for implantation into the portal vein. In 2006 the endothelialisation of an implanted SIS stent graft was compared with Dacron and PTFE in an ovine model. In this study the stent grafts were inserted into the thoracoabdominal aorta and endothelialisation of the stent graft was assessed during the follow up period (Yavuz et al. 2006). Results showed that Dacron exhibited the greatest and most progressive amount of endothelialisation. In comparison, SIS demonstrated progressive tissue remodelling and a moderate amount of neointimal formation.

7. Concept solution

A potential mechanism for improving the performance of the EVAR stent-graft is the insertion of a tissue-engineered stabilisation collar at the proximal and distal ends of the device as illustrated in Fig. 7.

A tissue-engineered ‘stent-collar’ may prevent common complications such as endoleaks and graft migration. Intuitively, a number of important critical issues need to be addressed prior to implementation of this possible solution. Compliance of the scaffold in tubular structures and the reduction in the scaffold’s strength caused by interactions with the ‘stent-graft’ should be investigated. Compliance issues may arise due to fluid flow and elastic characteristics of the arterial wall exerted on the tissue-engineered scaffold. Furthermore, radial forces exerted by the stent-graft induce stress loadings on the surface of the tissue-engineered scaffold. Structural properties of the scaffold also need to be accurately characterised. The scaffold’s potential to induce cellular attachment and host derived tissue-remodelling responses need to be explored. Contact between the tissue-engineered material and arterial wall may result in cell infiltration from the host’s endothelium (Fig. 8). To date
the majority of these questions remain unanswered and require further research to adequately develop ECM scaffolds into AAA endovascular treatment.

Fig. 7. Possible solution for optimisation and stabilisation of the stent graft during EVAR. (Adapted from http://www.medtronic.com/your-health/abdominal-aortic-aneurysm/getting-a-device/surgery)

Fig. 8. ECM collar interacting with aortic wall to anchor the stent-graft and prevent migration of the device
8. Conclusions

In this chapter we have examined key issues associated with medium-term failure of endovascular stents used in the EVAR procedure. Common complications associated with EVAR include endoleaks and migration of the deployed stent. Although tissue-engineered xenografts offer an attractive alternative for improving the EVAR procedure, it is notable that implantation of ECM scaffolds into stented environments have shown conflicting results to date. Encouragingly, the advent of alternative types of biological ECMS, such as UBM, has opened up new avenues for researchers with an interest in optimizing the EVAR procedure. Development of a tissue-engineered scaffold that optimizes the performance of the stent-graft remains a valuable possibility and exciting option for the future.

9. Acknowledgements

This was supported by Enterprise Ireland Commercialisation Funds with a Proof of Concept Phase and Technology Development Phase grants, and also by the Irish Research Council for Science, Engineering & Technology (IRCSET) - Marie Curie International Mobility Fellowship.

10. References

Tissue-Engineered Extracellular Matrices (ECMs) as Adjuvant Scaffolds for Endovascular Aneurysmal Repair (EVAR)

dacron, and expanded polytetrafluoroethylene suspended in the thoracoabdominal aorta in sheep', *J Vasc Interv Radiol*, 17(5), 873-82.

1. Introduction

Elastin is a key structural protein found in the extracellular matrix (ECM) of all mammals. As the dominant part of the elastic fiber, elastin confers the mechanical properties of resilience and elasticity essential to the function of elastic tissues. Elastin interacts with cells through specific biochemical mechanisms. This chapter considers the (1) mechanical and biochemical roles of elastin in elastic tissues and the subsequent disease phenotypes that result from the degradation and loss of elastin, (2) development and success of current elastin based biomaterials including sources of elastin for tissue engineering and their application, and (3) vascular constructs that our laboratory has developed from recombinant human tropoelastin. These constructs mimic the physical and biochemical properties of native elastin.

2. Elastin formation in vivo

Elastin is formed in the process of elastogenesis through the assembly and cross-linking of the protein tropoelastin (Figure 1). The tropoelastin monomer is produced from expression of the elastin gene during perinatal development by elastogenic cells such as smooth muscle cells (SMCs), endothelial cells, fibroblasts and chondroblasts (Uitto, Cristiano et al. 1991). The tropoelastin transcript undergoes extensive alternative splicing leading to the removal of entire domains from the protein. In humans, this splicing results in several tropoelastin isoforms, the most common of which lacks exon 26A (Indik, Yeh et al. 1987). Mature, intracellular tropoelastin associates with the elastin binding protein (EBP) and this complex is secreted to the cell surface (Hinek 1995). Competition from galactosides results in the dissociation of EBP from tropoelastin and the return of EBP to the cell (Mecham 1991). Released tropoelastin on the cell surface subsequently aggregates by coacervation. During this process, the hydrophobic domains of tropoelastin associate and tropoelastin molecules become concentrated and increasingly aligned allowing for subsequent formation of cross-links (Vrhovski, Jensen et al. 1997).

Coacervated tropoelastin is deposited onto microfibrils which probably serve as a scaffold to direct tropoelastin cross-linking and consequential elastic fiber formation. Cross-linking is facilitated by the enzyme lysyl oxidase, which deaminates lysine side chains in tropoelastin to form allysine sidechains that can subsequently react with adjacent allysine or lysine side chains to form cross-links (Kagan and Sullivan 1982). These cross-links can then further react to form desmosine and isodesmosine cross-links between tropoelastin molecules.
(Umeda, Nakamura et al. 2001). Multiple cross-links result in the mature insoluble elastic fiber.

Fig. 1. Schematic of the stages of elastogenesis.
(i) Tropoelastin is transcribed and translated from the elastin (ELN) gene and (ii) transported to the plasma membrane in association with EBP. (iii) Tropoelastin is released and aggregates on the cell surface, while EBP disassociates to form a complex with available galactosides. (iv) Tropoelastin aggregates are oxidized by lysyl oxidase leading to cross-linked elastin that accumulates on microfibrils which help to direct elastin deposition. (v) The process of deposition and cross-linking continues to give rise to mature elastic fibers

3. The role of elastin in vivo

Elastin plays a key structural role in elastic tissues including arteries, skin, ligament, cartilage and tendons (Sandberg, Soskel et al. 1981). As the dominant part of the elastic fiber, elastin confers resilience and elasticity essential to the function of these tissues. The arrangement of elastin in the ECM varies between different tissues to yield a wide range of structures with tailored elastic properties. For example, elastin in the form of thin lamina in the arterial wall is mostly responsible for the strength and elasticity necessary for vessel expansion and regulation of blood flow (Glagov, Vito et al. 1992). In the lung, elastin is arranged as a latticework that helps to support the opening and closing of the alveoli (Starcher 2001). In skin, elastin fibers are enriched in the dermis where they impart skin flexibility and extensibility (Roten, Bhat et al. 1996; Pasquali-Ronchetti and Baccarani-Conti 1997).
3.1 Mechanical properties of elastin
Elastin is extremely durable protein with a mean residence time of 74 years (Shapiro, Endicott et al. 1991). It comprises almost 90% of the elastic fiber where it dominates its elastic, mechanical properties. The Young’s modulus for elastic fibers typically ranges from 300 - 600 kPa although it can measure as low as 100 kPa for arterial elastin, highlighting the versatile nature of these structures within the ECM (Mithieux and Weiss 2005; Zou and Zhang 2009). Although the mechanism for elasticity has not been fully elucidated, elastic recoil likely to be entropically driven whereby extension of the protein results in a more ordered structure and thus recoil occurs so the protein can return to a disorder state (reviewed by (Rosenbloom, Abrams et al. 1993; Vrhoverski and Weiss 1998). This elasticity is due to the inherent elastic properties of the monomer (Holst, Watson et al. 2010; Baldock, Oberhauser et al. 2011).

3.2 Biological properties of elastin
Elastin plays key biological roles in the regulation of cells native to elastic tissues. Studies of elastin knockout mice reveal a crucial role for elastin in arterial morphogenesis through regulation of SMC proliferation and phenotype (Li, Brooke et al. 1998). This model is supported by in vitro studies showing that elastin can inhibit SMC proliferation in a dose dependent manner (Ito, Ishimaru et al. 1998). Elastin can also mediate the attachment and proliferation of endothelial cells from several vascular origins (Ito, Ishimaru et al. 1998; Williamson, Shuttleworth et al. 2007; Wilson, Gibson et al. 2010). Similar effects have been observed for dermal fibroblasts (Bax, Rodgers et al. 2009; Rnjak, Wise et al. 2011). Additionally elastin is a chemoattractant for SMCs, endothelial cells and monocytes (Senior, Griffin et al. 1980; Wilson, Gibson et al. 2010).

Fig. 2. Schematic of human tropoelastin primary organization and binding partners.
All domains are shown. Exons 13, 22, 23, 26A and 32 are subject to alternate splicing
Several cell receptors have been identified for elastin (Figure 2). The most well documented of these receptors is EBP, which binds to multiple sites including the VGVAPG sequence on exon 24 of tropoelastin (Rodgers and Weiss 2005). Upon binding elastin, this receptor activates intracellular signaling pathways involved in cell proliferation, chemotaxis, migration and cell morphology for a range of cell types including SMCs, endothelial cells, fibroblasts, monocytes, leukocytes and mesenchymal cells (Senior, Griffin et al. 1980; Indik, Abrams et al. 1990; Faury, Ristori et al. 1994; Faury, Ristori et al. 1995; Kamisato, Uemura et al. 1997; Jung, Rutka et al. 1998; Mochizuki, Brassart et al. 2002). Other cell receptors, including a less documented glycoprotein termed elastonectin and G protein-coupled receptor can bind elastin through the VGVAPG sequence (Hornebeck, Tixier et al. 1986). Interactions of vascular cells with elastin via these receptors have been shown to dictate focal adhesion formation, cell proliferation and migration (Hornebeck, Tixier et al. 1986; Karnik, Brooke et al. 2003; Karnik, Wythe et al. 2003). Glycosaminoglycans on the SMC and chondrocyte cell surface dominate binding to the C-terminus of bovine tropoelastin (Broekelmann, Kozel et al. 2005; Akhtar, Broekelmann et al. 2011). Cell interactions with human tropoelastin C-terminus specifically occur through the integrin \(\alpha_v\beta_3 \) (Rodgers and Weiss 2004; Bax, Rodgers et al. 2009). Elastin binding for some cell types is likely to occur through multiple receptors (Bax, Rodgers et al. 2009; Wilson, Gibson et al. 2010; Akhtar, Broekelmann et al. 2011).

4. Elastin and disease

Disease phenotypes manifest due to the degradation and loss of elastin through injury, genetic mutation or age. For example, autosomal dominant and recessive forms of cutis laxa mutations can arise from genetic modifications to the elastin gene and impaired vesicular trafficking, and have been reviewed elsewhere (e.g. (Huchtagowder, Morava et al. 2009; Callewaert, Renard et al. 2011)). In skin, the loss of elastin in the dermal layers in severe burns leads significant physical injuries including scarring, wound contraction and loss of skin extensibility (Rnjak, Wise et al. 2011). In the vasculature, genetic mutations in the elastin gene or genes associated with elastic fiber formation result in severe, debilitating diseases (reviewed by (Kielty 2006)). Supravalvular aortic stenosis can arise from point mutations, deletions or translocations within the elastin gene that typically lead to haploinsufficiency and an altered organization of elastic lamellae in the artery, SMC hyperproliferation, increased media thickness and obstruction of the aorta (Urban, Zhang et al. 2001). Elastin is also associated with several vascular pathologies. Damage and fragmentation of elastin in the artery have been linked with deregulation of SMC phenotype, SMC hyperproliferation and invasion which cause vessel occlusion and cardiovascular complications (Brooke, Bayes-Genis et al. 2003). The failure of inelastic materials as arterial replacements further indicate the essential need for intact elastin in functional arteries (Abbott, Megerman et al. 1987).

5. Elastin biomaterials

Common to all elastin diseases is the catalogued in vivo inability to adequately regenerate and repair dysfunctional elastic fibers leading to subsequent failure of tissue function. This deficiency is mostly attributed to exclusive expression of elastin during early development
(Mecham 1991), which results in poor renewal of elastin in adult tissues. Materials that can serve as elastin replacements in adult tissues are in demand. This demand is most apparent in vascular tissue engineering as cardiovascular disease is the major contributor to adult mortality worldwide (Lloyd-Jones, Adams et al. 2010). Current synthetic vascular biomaterials, particularly expanded polytetrafluoroethylene (ePTFE) and polyethylene terephthalate (Dacron) are poorly mismatched to native arteries in terms of mechanical properties, endothelial cell and SMC interactions and thrombogenicity which lead to a high failure rate in patients (Chlupac, Filova et al. 2009). Elastin can restore properties that are deficient in current grafts, including compliance and strength to match native vessels and regulation of endothelial and smooth muscle cells.

6. Decellularized tissues as elastin biomaterials

Decellularized tissues, generated by the removal of the cellular components of tissue explant are useful as biomaterials as they a priori possess much of the complex architecture of the native ECM. Elastic tissues are particular amenable to this method as the stability and insolubility of the elastin protein means it is resistant to many treatments used during decellularization processes.

Decellularizing elastin-rich tissues have been proposed as a path towards the potential replacement of artery, heart valves, bladder skin and lung (Daamen, Veerkamp et al. 2007; Petersen, Calle et al. 2010; Price, England et al. 2010). Enriched elastin vascular grafts generated by decellularization and removal of collagen with proteases from porcine carotid arteries can support fibroblasts in vitro (Chuang, Stabler et al. 2009). Cell infiltration has also been observed for other decellularized vascular constructs in vitro and in vivo (Schmidt and Baier 2000; Conklin, Richter et al. 2002; Dahl, Koh et al. 2003; Uchimura, Sawa et al. 2003). Skin replacements formed from decellularized porcine dermis containing 30% elastin show vascularization and support of cultured keratinocytes when examined in a rat excision model. Degradation of the collagen component of the material also occurs (Hafemann, Ensslen et al. 1999). Transplant of a repopulated decellularized human trachea demonstrates the feasibility of acquiring functionality and improved mechanical capabilities in a patient after 4 months (Macchiarini, Jungebluth et al. 2008).

Despite these advantages, decellularized tissue sources are generally animal derived and are therefore restricted in shape, size and supply. Additionally, decellularization methods involve chemical, physical or enzymatic treatments that can individually or collectively compromise mechanical and biological properties (Gilbert, Sellaro et al. 2006). The common use of detergents can limit the degree of cell repopulation. Decellularization methods are highly specific to a particular tissue thus their broader application to different tissues yields viable results in terms of remaining ECM structure and degree of decellularization (Gilbert, Sellaro et al. 2006). Lack of uniformity and versatility can limit the use of decellularized materials as commercial tissue replacements.

7. Tissue derived elastin constructs

7.1 Insoluble elastin materials

Elastin used for in vitro work is generally obtained by purifying the protein directly from elastin-rich tissues. Tissues are treated with chemicals such as NaOH or guanidine-HCl and/or high heat to remove other proteins and cellular material and leave insoluble elastic
fibers. However extensive cross-linking and the consequential insolubility of elastin makes it difficult to manipulate in vitro (Daamen, Veerkamp et al. 2007). Freeze-dried scaffolds of insoluble elastin fibers and purified collagen fibers present mechanical properties consistent with those of elastic tissues (Buttafoco, Engbers-Buijtenhuijs et al. 2006). Furthermore, these scaffolds appear to be compatible with SMCs (Buijtenhuijs, Buttafoco et al. 2004; Engbers-Buijtenhuijs, Buttafoco et al. 2005; Buttafoco, Engbers-Buijtenhuijs et al. 2006), endothelial cells (Wissink, van Luyn et al. 2000) and platelets (Koens, Faraj et al. 2010) pointing to potential vascular applications. Also, insoluble elastin/collagen scaffolds have been explored as possible dermal replacements as these materials can support fibroblasts (Daamen, van Moerkerk et al. 2003) and keratinocytes (Lammers, Tjabringa et al. 2009). Other insoluble elastin composites such as elastin/fibrin biomaterials have been generated but characterization of these materials is limited to mechanical capacity (Barbie, Angibaud et al. 1989).

7.2 Hydrolyzed elastin materials

The solubility of tissue-derived elastin can be improved by partial hydrolysis. A fragmented elastin preparation termed α-elastin is obtained by hydrolysis with oxalic acid and is often used in in vitro studies of elastin (Partridge, Davis et al. 1955). Hydrolysis can be performed with potassium hydroxide to yield κ-elastin or through mild digestion with proteinases (Partridge, Davis et al. 1955; Jacob and Hornebeck 1985). Hydrolyzed preparations of elastin display various properties that are similar to the native protein including temperature-induced aggregation (coacervation) and regulation of SMC and fibroblast phenotype (De Vries, Zeegelaar et al. 1995; Ito, Ishimaru et al. 1998). Fragmentation of elastin is associated with reduced protein structural integrity and altered cellular signaling properties (Daamen, Veerkamp et al. 2007; Bax, Rodgers et al. 2009).

Multiple vascular materials have been synthesized from hydrolyzed elastin preparations (Table 1). Hydrogels, cross-linked films and electrospun fibers containing hydrolyzed α-elastin all show preferable vascular material properties including regulation of SMC phenotype and increased mechanical elasticity. Electrospun materials are of particular interest as architecturally, these materials closely mimic the dimensions of elastic fibers in vivo (Li and Xia 2004). Hydrolyzed elastin materials have also been proposed for use in the repair of elastic cartilage. In porous PCL scaffolds, infusion of α-elastin demonstrates enhanced scaffold elasticity and attachment and proliferation of articular cartilage chondrocytes in vitro (Annabi, Fathi et al. 2011). Replication of auricular-like cartilage has also been explored using alginate, collagen type I and κ-elastin containing hydrogels with auricular cartilage chondrocytes (de Chalain, Phillips et al. 1999). When these materials were implanted in mice and harvested after 12 weeks, matrix components including collagen and elastic fibers were present.

Dermal replacements containing hydrolyzed elastin demonstrate improved properties over elastin-free materials in regards to wound contraction and tissue regeneration (Rnjak, Wise et al. 2011). For example, MatriDerm, a collagen based scaffold with α-elastin shows improved skin elasticity (Ryssel, Gazyakan et al. 2008). Hydrogels formed exclusively from α-elastin (Figure 3) favorably support attachment and proliferation of dermal fibroblasts in vitro (Annabi, Mithieux et al. 2009; Annabi, Mithieux et al. 2009).
Elastin Based Constructs

<table>
<thead>
<tr>
<th>Scaffold</th>
<th>Advantages</th>
<th>Limitations</th>
<th>Reference</th>
</tr>
</thead>
</table>
| α-elastin film | -Low elastic modulus
-attachment & proliferation of SMCs | -reduced SMC proliferation compared to TCPS | (Leach, Wolinsky et al. 2005) |
| elastin/gelatin gel | -Young’s modulus matched to native artery
-proliferation & infiltration of SMCs | -reduced SMC growth compared to TCPS | (Lamprou, Zhdan et al. 2010) |
| Collagen type I gels containing α-elastin | -SMC proliferation inhibited | - EC proliferation inhibited at high α-elastin concentrations | (Ito, Ishimaru et al. 1997) |
| α-elastin & collagen electrospun blended conduit | -attachment & proliferation of SMCs | -no mechanical testing | (Buttafoco, Kolkman et al. 2006) |
| α-elastin electrospun sheet | -SMC proliferation inhibited
-α-SMA expression observed | -no mechanical testing | (Miyamoto, Atarashi et al. 2009) |
| α-elastin electrospun fibers | -attachment & proliferation of embryonic mesenchymal cells | -complete 3D constructs not created | (Li, Mondrinos et al. 2005) |
| α-elastin, PLGA & gelatin electrospun sheet | -mechanical properties tuned to artery through polymer content
-proliferation of ECs on scaffold surface & infiltration of SMCs.
-expression of functional EC molecules | -mechanical properties tested on electrospun sheets, not tubes | (Han, Lazarovici et al. 2011) |
| α-elastin, collagen type I & PLGA electrospun conduit | -matched compliance to bovine iliac artery
-proliferation of ECs on inner & SMCs on outer surface of conduit
-no immune reaction when implanted in mice | -scaffold contraction in vitro | (Stitzel, Liu et al. 2006; Lee, Yoo et al. 2007) |
| α-elastin, collagen type I & PLLA, PCL or PLCL blended electrospun conduit | -growth of bovine ECs
-infiltration and α-SMA expression of SMCs | -scaffold contraction of PLCL blends in vitro | (Lee, Yoo et al. 2007) |
<table>
<thead>
<tr>
<th>Scaffold</th>
<th>Advantages</th>
<th>Limitations</th>
<th>Reference</th>
</tr>
</thead>
</table>
| α-elastin & PDO blended electrospun conduit | -mechanical properties matched to femoral artery with increased elastin content
- increased cell infiltration with increased elastin content
- increased graft burst pressure with suture reinforcement | - suture reinforcement lowers compliance | (Sell, McClure et al. 2006; Smith, McClure et al. 2008) |
| Elastin, collagen type I & collagen type III tri-layered electrospun conduit | - growth of EC, SMC and Fb in separate layers | - delamination of layers
- no mechanical testing | (Boland, Matthews et al. 2004) |
| α-elastin, gelatin & PDS blended electrospun conduit | - matched tensile properties & elastic modulus to femoral artery | - loss of tensile properties due to in vitro degradation
- no cell studies performed | (Thomas, Zhang et al. 2009) |
| α-elastin, gelatin & Maxon multi-layered electrospun conduit | - comparable mechanical properties to femoral artery | - no cell studies performed | (Thomas, Zhang et al. 2007) |
| bovine elastin, PGC, PCL & gelatin bi-layered electrospun conduit | - tensile strength matched to native artery
- attachment & proliferation of EC & EPCs | - no SMC characterization | (Zhang, Thomas et al. 2010; Zhang, Thomas et al. 2010; Zhang, Xu et al. 2011) |
| α-elastin, collagen, PCL tri-layered electrospun conduit | - mechanical properties matched to native artery by modulation of elastin & PCL content | - no cell studies performed | (McClure, Sell et al. 2010) |

Table 1. Scaffolds for vascular constructs synthesized using hydrolyzed elastin.
8. Elastin-sequence based materials

8.1 Synthetic elastin-based peptides
Synthetic peptides based on key elastin sequences present elastin-like properties including self-assembly, cross-linking and cell interactions (Long, King et al. 1989; Faury, Garnier et al. 1998; Bellingham, Woodhouse et al. 2001; Karnik, Brooke et al. 2003; Karnik, Wythe et al. 2003). Coating of materials with elastin peptides can improve biocompatibility by providing protein sequences required for cell binding (reviewed by (Almine, Bax et al. 2010)). Some three dimensional materials formed from elastin-based peptides demonstrate elastin-like properties, including hydrogels that support cell growth and possess high degrees of elasticity (Keeley, Bellingham et al. 2002; Trabbic-Carlson, Setton et al. 2003). However as with hydrolyzed elastin preparations, synthetic peptides can lack the full repertoire of properties of the fully intact protein and are associated with inflammation (Faury, Ristori et al. 1995).

8.2 Recombinant human tropoelastin
Recombinant human tropoelastin (rhTE) is expressed and purified can be made as a recombinant protein in Escherichia coli. rhTE exhibits many properties of native tropoelastin including the ability to coacervate under physiological conditions and be cross-linked in vitro to form insoluble elastin fibers (Vrhovski, Jensen et al. 1997; Muiznieks, Jensen et al. 2003). rhTE promotes endothelial cell and fibroblast attachment, spreading and proliferation when used as a surface coating (Bax, Rodgers et al. 2009; Rnjak, Li et al. 2009; Wise, Byrom et al. 2011) and improves the biocompatibility of implanted devices (Yin, Wise et al. 2009; Wilson, Gibson et al. 2010).
Three dimensional biomaterials are produced by cross-linking rhTE to form synthetic human elastin. Synthetic elastin has advantages over decellularized tissue and hydrolyzed elastin preparations as it utilizes human protein avoiding potential problems arising from species differences while benefiting from homogeneity to improve reproducibility and uniformity. These types of synthetic elastin hydrogels can be made by chemical cross-linking (Mithieux, Rasko et al. 2004), enzyme treatment (Mithieux, Wise et al. 2005) or raising the pH (Mithieux, Tu et al. 2009) of rhTE solutions (Figure 4). The hydrogels demonstrate mechanical properties that are consistent with native elastin including low elastic moduli, support of attachment and proliferation of dermal fibroblasts (Mithieux, Rasko et al. 2004; Rnjak, Li et al. 2009; Annabi, Mithieux et al. 2010). Increases in hydrogel porosity using high pressure CO₂ or the incorporation of glycosaminoglycans improve cell infiltration into hydrogels (Annabi, Mithieux et al. 2010; Tu, Mithieux et al. 2010) where the maintenance of fibroblasts within these scaffolds present them as candidate dermal substitutes.

![Fig. 4. Synthetic human elastin hydrogels (A) formed from the cross-linking of rhTE and (B) after hydration in phosphate buffered saline. (C) Hydrogel surface porosity shown by scanning electron microscopy](image)

Electrospun synthetic elastin allows for the formation of highly organized biomaterials with tunable mechanical biological properties. Electrospun synthetic elastin is formed by the electrospinning and chemical cross-linking of rhTE to yield ribbon-like microfibers (Figure 5) whose dimensions match those of native elastin fibers (Nivison-Smith, Rnjak et al. 2010). Highly porous electrospun synthetic elastin scaffolds, generated by using high flow rates facilitate the infiltration of dermal fibroblasts in vitro and present an alternative to synthetic elastin hydrogels as a dermal replacement (Rnjak, Li et al. 2009).

As a potential vascular material, electrospun synthetic elastin shows attractive characteristics including internal mammary artery-matched elastic mechanical properties, low platelet adhesion (Wise, Byrom et al. 2011) and support of growing human vascular cells including SMCs, endothelial cells (Figure 6) and embryonic palatal mesenchymal stem cells (Li, Mondrinos et al. 2005; Nivison-Smith, Rnjak et al. 2010). Synthetic human elastin fibers can also direct cell spreading to resemble cell organization in vivo. For example, the radial alignment of SMC in the arterial media is mimicked by culture of these cells on parallel synthetic elastin fibers (Nivison-Smith & Weiss 2011, submitted). Blended conduits of synthetic elastin and silk or polycaprolactone display elasticity and cell adhesion properties courtesy of the rhTE component while the composite component confers additional mechanical strength (Hu, Wang et al. 2010; Wise, Byrom et al. 2011).
Fig. 5. Synthetic elastin electrospun materials. Representative photographs of a synthetic human elastin scaffold (A) before cross-linking and (B-C) after cross-linking with hexamethylene diisocyanate and wetting with phosphate buffered saline. Uncross-linked scaffolds are stiff and inflexible while cross-linked scaffolds are highly flexible and collapse when not supported. Scanning electron micrographs of (D) uncross-linked electrospun fibers and (E) cross-linked electrospun fibers reveal the ribbon-like morphology of fibers.

9. Conclusion

Elastin is an essential matrix protein, so it is logical that biomaterials designed for elastic tissues should incorporate elastin. Difficulties in sourcing pure intact elastin preparations, particularly those that reflect human sequences, has limited the generation of these materials. Synthetic human elastin that is made from rhTE presents a versatile and stable component of vascular and dermal materials. Elastin-based constructs demonstrate mechanical and biological properties consistent with native elastin and have potential for a wider range of applications.

10. Acknowledgements

We acknowledge grant support from the Australian Research Council and the National Health and Medical Research Council. We thank Dr. Anna Waterhouse for the images related to elastin hydrogels. We acknowledge the contributions of the staff and the facilities made available at the AMMRF (Australian Microscopy & Microanalysis Research Facility) at the Australian Center for Microscopy and Microanalysis, The University of Sydney.
Fig. 6. Examples of synthetic elastin electrospun materials. Scanning electron micrographs of (A) human umbilical vein endothelial cells, (B) SMCs and (C) dermal fibroblasts cultured on synthetic elastin fibers

11. References

Elastin Based Constructs

Elastin Based Constructs

1. Introduction

Cell therapy is defined as the minimally-invasive delivery of therapeutic cells into a human host to repair damaged or diseased tissue(s). Its long-term goal is to reduce the current expense of 1% of US GDP on organ replacement therapies (Lysaght, et al., 2008). Hematopoietic stem cell transplants are the most popular cell therapy and have been crucial in treating a variety of hematological diseases (Cutler and Antin, 2001; Horowitz, 2004). For novel cellular therapies (i.e. using non-hematopoietic cells directed against non-hematological diseases), the numbers fall off precipitously. Of these, only cell-based cartilage repair is the only novel cell therapy so far used with significant frequency (Martin, et al., 2010). Since this therapy additionally requires the expansion of and the use of autologous chondrocytes, this data suggests a crucial bottleneck for a wide variety of novel cellular therapies will be both in producing enough rare cells for therapeutic effect as well as for obviating immunologic concerns.

The emergence of stem cell biology has reshaped the cell therapy and tissue engineering landscape because the quantity and breadth of therapeutic cell has been dramatically expanded. Stem cells are typically derived from embryos or adult tissues and have two abilities: to self-renew (i.e. one stem cell can divide and make more stem cells) and to differentiate into specialized cells. These characteristics allow stem cells to be used to produce large quantities of a wide variety of cell types, including rare or difficult to harvest cell types (Takahashi, et al., 2007; Thomson, et al., 1998; Yu, et al., 2007). The therapeutic value of these cells can captured by either using them to directly produce new tissue (Keirstead, et al., 1999) or as a source of bioactive agents such as cytokines and growth factors inducing host cells and tissues to regenerate themselves (Caplan and Dennis, 2006). In addition, a wide variety of stem cells can be harvested or derived from adult tissues such as bone marrow, adipose tissue, or cord blood (Ingram, et al., 2004; Lennon and Caplan, 2006; Zuk, et al., 2001). Adult stems can potentially lower the hurdle of immunologic incompatibility due to either their autologous nature or immunomodulatory effects (Caplan and Dennis, 2006).

While stem cells obviate the shortcomings of using a patient’s differentiated cells, the rate-limiting step in successful cell therapy is not only the number of transplanted cells but their survival rate post-transplantation. In short, the transplanted stem cells need help to stay...
alive long enough for their therapeutic effect to be seen. The majority of stem and progenitor cells in the transplanted bolus die shortly after transplantation (Bliss, et al., 2007; Snyder, et al., 2010; Terrovitis, et al., 2008; Zhong, et al., 2010). In some cases, more than 95% of transplanted stem cells die within two weeks of transplantation (Snyder, et al., 2010; Terrovitis, et al., 2008; Zhong, et al., 2010). Since tissues contain cells encapsulated in a carbohydrate and protein-rich extracellular matrix (ECM), one approach to significantly improve stem cell survival is to include a biomaterial carrier that acts as an ECM mimic upon in vivo delivery. These carriers have been prepared from synthetic or naturally sourced polymers and provide an adhesion surface which not only localizes cells but also provides a template for new tissue formation (Mooney and Vandenburgh, 2008).

While there are excellent review articles describing the design criteria for clinically useful matrices (Lutolf and Hubbell, 2005; Prestwich, 2008), this chapter focuses on their translation to the clinic—that is, the development of these matrices as FDA-approved injectable cell carriers, or cellular delivery vehicles, and how both biological as well as non-biological considerations (i.e. physician requirements, intellectual property, regulatory, manufacturing) must be satisfied before the biomaterial can reach the medical marketplace. In the first part, we present an overview of some of the basic biomaterials which have the potential to be developed as FDA-approved cellular delivery vehicles. Next, a more in-depth discussion of these biological and non-biological considerations follows. Finally, we describe one matrix, HyStem®, and its potential use in three areas: stroke, cartilage repair, and gene therapy.

2. Injectable matrices for stem cell therapies

2.1 Lessons from Hematopoietic Stem Cell Transplantation—the first stem cell therapy

The first stem cell therapy developed was hematopoietic stem cell transplantation (HSCT) reported in 1968 (Bach, et al., 1968; Gatti, et al., 1968) and is used to treat a variety of hematological malignancies (Cutler and Antin, 2001). It is also by far the most popular: there are in excess of 45,000 HSCTs performed annually worldwide (Horowitz, 2004). While there is still much research to do to understand the entire mechanism of how HSCT works, a review of HSCT is informative since many lessons can be learned and applied to novel non-hematological stem cell therapies.

HSCT can be summarized as follows: HSCT typically begins with the harvest of either bone marrow or the leukocyte fraction of peripheral blood either autologously or allogeneically from an immunologically (or human leukocyte antigen (HLA)) matched donor. The therapeutic fraction of these cells are the CD34+ (early hematopoietic cell marker) cells and contains both multipotent hematopoietic stem cells (CD34+/CD38-) (Cutler and Antin, 2001) and more mature hematopoietic precursor cells (Duran-Struuck and Dysko, 2009). A minimum of 2x10⁶ CD34+ cells are required per kg recipient body weight, or 300 million cells per 150 kg adult (Cutler and Antin, 2001; Mavroudis, et al., 1996). Importantly, the mixture of the young pluripotent and more mature hematopoietic stem cells is crucial since the older cells act as escorts to provide temporary immunological restoration and host survival while the younger cells engraft and generate mature cells to replace the former (Duran-Struuck and Dysko, 2009).

After harvest from the donor, these cells are then transplanted intravenously into a recipient who may require prior myeloablation of the host bone marrow. Myeloablative treatment
destroys the host hematopoietic cellular population while leaving many aspects of the hematopoietic niche intact (Dominici, et al., 2009; Duran-Struuck and Dysko, 2009; Slayton, et al., 2007). The niche includes cells such as osteoblasts and mesenchymal stromal cells to which the HSCs attach to as well as communicate with via soluble and insoluble signals (Scadden, 2006; Taichman, 2005). While HSCs find the bone marrow randomly (Cui, et al., 1999), a significant number of cells travel to the marrow where engraftment occurs 2-4 weeks post-transplantation (Cutler and Antin, 2001).

From this example, it can be inferred that the key steps in successful stem cell engraftment include 1) cellular and sample integrity, 2) cellular travel to and anchoring within the niche (homing and lodgment) (Cui, et al., 1999; Lam and Adams, 2010), 3) niche remodeling (Sands and Mooney, 2007), 4) cellular proliferation and differentiation (engraftment) (Cutler and Antin, 2001), and 5) an appropriate space and nourishment to do so (Scadden, 2006). HSCT only requires a 2-4 week post-transplantation time period for engraftment since the transplanted cells and the host cell niche are ready to be merged. The transplanted cells are a mixture of gently-processed cells and they only require less than two days for bone marrow localization after IV administration (Cui, et al., 1999). Once in the bone marrow, the cells should lodge efficiently since the irradiated bone marrow niche mostly retains its native matrix structure and supporting cells (Dominici, et al., 2009; Slayton, et al., 2007) with little remodeling required. In HSCT, both space and access to blood supply is present for the cells since bone has significant open regions for the cells in its interior and is highly vascularized (Gentry-Steele and Bramblett, 1988).

2.2 Challenges for novel stem cell-based therapies

Unlike HSCT, novel stem cell therapies face a more difficult road primarily because neither the stem cell nor its host microenvironment has been prepared in advance of their arrival in their new home. Since stem cells have little function outside of their niche (Scadden, 2006), they must construct their own among their other duties under transplantation duress. Initially, the stem/progenitor cells are extracted from its self-synthesized ECM either from a solid tissue organ or from the surface of a tissue culture plastic plate. Cellular integrity is the first obstacle these cells face. Since harsh enzymatic methods such as trypsinization are typically used, integrins required for cellular attachment are cleaved and need to be resynthesized by the cell (Harrison and Rae, 1997; Wu, et al., 2005). The next major obstacles are lodgment and niche remodeling. While the cells are then injected adjacent to the host target tissue of interest, they have few surface receptors to attach to the surrounding ECM. If the target tissue is diseased or damaged, its niche may also need significant remodeling. For example, the tissue ECM may have significant scar tissue with dramatically different mechanical properties and function from those of the native target tissue (Laflamme, et al., 2007; Martens, et al., 2009; Reilly and Engler, 2009; Scadden, 2006). Altered microenvironment compliance could provide more resistance to remodeling by affecting the desired stem cell differentiation path (Engler, et al., 2006). The final obstacle is the inadequate conditions for engraftment since there is no pre-established vasculature present to nourish the transplanted cells (Martens, et al., 2009). In some cases, there will be little or no space for the cells to divide into since the target tissue has no cavity (Darabi, et al., 2009; Laflamme, et al., 2007; Terrovitis, et al., 2008). It is no surprise that most transplanted cells die within 24 hours of transplantation (Bliss, et al., 2007; Guerette, et al., 1997; Snyder, et al., 2010; Suzuki, et al., 2004; Tate, et al., 2009; Terrovitis, et al., 2008; Zhong, et al., 2010).
2.3 The hydrogel cell delivery matrix

A solution is to borrow principles from the field of Tissue Engineering by providing a temporary, more native niche for the cells until they can synthesize their own. Tissue engineering is the \textit{ex vivo} cultivation of cells on polymeric scaffolds in order to generate tissues or organs for transplantation (Kaihara and Vacanti, 1999). The use of degradable polymer scaffolds is crucial since it provides an initial remodelable substrate for the cells, provides space for the cells to reorganize into more complicated tissues, and potentially can be designed to provide an initial template to guide subsequent structure formation (Kaihara and Vacanti, 1999). Hydrogels made from naturally occurring biopolymers are one kind of degradable scaffold that has four key characteristics: first, their high water content simulates the microenvironment for soft tissues and allows for transfer of gases, small molecules, and proteins (Tibbitt and Anseth, 2009). Second, the starting biopolymers frequently have chemically-available side groups which can functionalized for altering its mechanical properties, degradation time, and cellular adhesion surfaces (Serban and Prestwich, 2008; Tibbitt and Anseth, 2009). Third, they can be constructed to encourage neovascularization for the cells (Cai, et al., 2005; Liu, et al., 2007; Phelps, et al., 2010). Finally, they are injectable when in liquid form, fulfilling the minimal invasive surgery criterion favored by physicians (Miles, et al., 2004).

2.3.1 Types of hydrogels currently available

While there are currently no hydrogel matrices FDA-approved for use specifically for stem cell therapies, there are a number of biomaterials to choose from with varying degrees of regulatory and manufacturing hurdles (Table 1). These include those that 1) have been recently developed in academic laboratories, 2) are commercially available for research use only and whose regulatory status can be extended for human clinical use (e.g. HyStem-C, MT-3D Q-gel, RGD-alginate, etc), or 3) are in fact FDA-approved for acellular indications and would need to be extended for stem cell delivery indications (e.g. Fibrin glue), (Figure 1, Table 1).

All of these matrices roughly fall into one of three classifications: natural, synthetic, or semi-synthetic (Fig. 1). While natural matrices are typically well-tolerated by the host and cells due to their mimicking the natural ECM in terms of backbone and microstructure, they generally suffer from lot-to-lot variability, high degradation rates, and poor tunability (Tibbitt and Anseth, 2009). In addition, their complexity and poor definition can portend difficult manufacture pursuant to current Good Manufacturing Practices (cGMPs) required for clinical application. For example, Matrigel is arguably the most popular hydrogel matrix used in preclinical studies since it is in fact a native ECM with a variety of matricellular proteins and growth factors. Despite these benefits, Matrigel will likely never be placed in humans due to regulatory and manufacturing concerns. In particular, its mouse tumor origin and ill-defined, variable composition are problematic with nearly two-thousand unique proteins present (Hughes, et al., 2010; Nagaoka, et al., 2010).

Synthetic matrices are the opposite: while very reproducible, tunable, and amenable to more facile regulatory and manufacturing protocols, they generally require engineering to provide both cellular attachment sites and degradation rates comparable to those for native ECMs (Tibbitt and Anseth, 2009). Semi-synthetic matrices share characteristics of both classes and can be constructed either by modifying purified natural biopolymers such as HA or Alginate (Alsberg, et al., 2001; Darr and Calabro, 2009; Zheng Shu, et al., 2004) or by
engineering synthetic polymers with integrin and/or growth factor binding sites and degradation signals to more closely mimic the natural ECM (Raeber, et al., 2005; Tibbitt and Anseth, 2009).

<table>
<thead>
<tr>
<th>Name</th>
<th>Base Biopolymer</th>
<th>Crosslinker</th>
<th>Cell Attachment sites</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrigel™ (BD Biosciences)</td>
<td>Laminin and Collagen IV</td>
<td>None</td>
<td>Yes</td>
<td>(Kleinman and Martin, 2005)</td>
</tr>
<tr>
<td>Purecol ® (Advanced BioMatrix)</td>
<td>Collagen I</td>
<td>None</td>
<td>Yes</td>
<td>(Beckman, et al., 2008)</td>
</tr>
<tr>
<td>Tisseel ® (Baxter)</td>
<td>Fibrin</td>
<td>Glutamyl/lysine covalent bonds</td>
<td>FN</td>
<td>(Ahmed, et al., 2008)</td>
</tr>
<tr>
<td>Alginate (FMC Biopolymer)</td>
<td>Alginic acid</td>
<td>Calcium</td>
<td>none</td>
<td>(Alsberg, et al., 2001)</td>
</tr>
<tr>
<td>HyStem-C (Glycosan BioSystems)</td>
<td>Thiolated HA</td>
<td>PEGDA</td>
<td>Thiolated gelatin</td>
<td>(Zheng Shu, et al., 2004)</td>
</tr>
<tr>
<td>RGD-alginate (FMC Biopolymer)</td>
<td>Alginic acid</td>
<td>Calcium</td>
<td>RGD</td>
<td>(Alsberg, et al., 2001)</td>
</tr>
<tr>
<td>Corgel™ (Lifecore)</td>
<td>Tyraminated HA</td>
<td>Dityramine covalent bond</td>
<td>none</td>
<td>(Darr and Calabro, 2009)</td>
</tr>
<tr>
<td>Puramatrix™ (BD Biosciences)</td>
<td>(RADA)₁₆</td>
<td>None</td>
<td>RAD</td>
<td>(Semino, 2008)</td>
</tr>
<tr>
<td>PEGDA (Glycosan BioSystems)</td>
<td>PEGDA</td>
<td>Covalent bond</td>
<td>none</td>
<td>(Moon, et al., 2009)</td>
</tr>
<tr>
<td>MT-3D (Qgel)</td>
<td>PEGDA</td>
<td>Di-cysteine containing peptide</td>
<td>RGD</td>
<td>(Raeber, et al., 2005)</td>
</tr>
</tbody>
</table>

Table 1. Commonly-used commercially available injectable hydrogel matrices.
Abbreviations: PEGDA, polyethylene glycol diacrylate; HA, hyaluronic acid; FN, fibronectin; RADA, arginine-alanine-aspartate-alanine tetrapeptide; RGD, arginine-glycine-aspartate tripeptide. Suppliers are shown in parentheses below product name.
A common misconception is that a variety of FDA-approved hydrogel matrices are simple to transfer from its approved indication to one involving stem cell delivery. One case in point is natural biopolymer-derived dermal fillers which are currently approved for use as acellular space fillers in cosmetic indications. Examples include collagen-based Zyplast® and HA-based Juvederm® and Restylane® (Newman, 2009). Many of these biomaterials, however, are pre-crosslinked within prefilled syringes and preclude the addition and homogenous distribution of cells prior to injection. In addition, these HA-based biomaterials have no cellular attachment sites, causing cellular apoptosis or anoikis.

2.4 Matrix choice

Even though there a wide variety of hydrogel matrices to choose from, there is still doubt as to whether a delivery vehicle is even needed and if so, how one might choose the best matrix for an application. For many researchers and physicians, the widespread death of stem cells after transplantation is thought to be unavoidable and provides the rationale for implanting a massive number of cells. The hope is that enough cells survive post-transplantation for there to be a therapeutic effect. For those who see value in including a matrix carrier, its selection is usually an afterthought. For some, the choice is made out of convenience due to collaboration with a bioengineer in the same institution. For others, it is made from a scan of the literature or from collaborator recommendations. Without considering their therapeutic stem cell microenvironment after transplantation, the range of options, and requirements for translation, all matrices appear comparable. However, there are at least three distinct lenses through which a researcher or physician must peer to decide on the best matrix for the therapeutic stem cell and indication. These viewpoints provide the basis for three sets of criteria that must a matrix must fulfill.

2.4.1 Biological criteria for the researcher

From a researcher’s perspective, the matrix choice will be driven by maintaining consistency with a) the therapeutic stem cell mode of action b) the properties of the ECM from both the transplanted cell and the target tissue. There are two primary modes of action for a

![Fig. 1. Different types of hydrogel matrices](image)

A common misconception is that a variety of FDA-approved hydrogel matrices are simple to transfer from its approved indication to one involving stem cell delivery. One case in point is natural biopolymer-derived dermal fillers which are currently approved for use as acellular space fillers in cosmetic indications. Examples include collagen-based Zyplast® and HA-based Juvederm® and Restylane® (Newman, 2009). Many of these biomaterials, however, are pre-crosslinked within prefilled syringes and preclude the addition and homogenous distribution of cells prior to injection. In addition, these HA-based biomaterials have no cellular attachment sites, causing cellular apoptosis or anoikis.
therapeutic stem cell after transplantation: direct, or transplanted cell engraftment into the host tissue and indirect, or secretion of trophic bioactive factors which induce host tissue repair (Caplan and Dennis, 2006). The former requires the matrix to be degradable in concert with the remodeling and cell proliferation of the transplanted cells (Mooney and Vandenburgh, 2008). Alternatively, the latter requires a release of soluble factors as well as a longer-term protective environment from the host immune system (Luca, et al., 2007; Penolazzi, et al., 2010). Since alginate and PEGDA degrade very slowly (Liao, et al., 2008; Shikanov, et al., 2009), they are well suited for the latter indication. Indeed, both have already been used for non-stem cell based therapeutics; for example encapsulating pancreatic beta cells or islets in alginate or PEGDA prior to transplantation promotes cellular immunoprotection and survival for these cells and extends the window of insulin production (Lin and Anseth, 2009; Wilson and Chaikof, 2008).

Matrix choice is also dependent on the properties of the therapeutic cell ECM since it can provide cues for proper cellular function. In particular, the matrix biopolymer backbone is an essential property to consider since it can contain a great deal of biological information crucial to the cell type. For example, HA has a dual role in cellular biology: it plays a key structural role in the ECM through its interaction with members of the lectican family of proteoglycans while affecting cellular signaling important for development (Camenisch, et al., 2000; Ruoslahti, 1996). In cartilage, HA interacts with the lectican aggrecan which stabilizes the cartilage ECM (Aszodi, et al., 2006; Fraser, et al., 1997; Knudson and Knudson, 1993; Laurent and Fraser, 1992). In addition, HA also interacts with the chondrocyte CD44 receptor to induce genes involved in matrix degradation (Schmitz I et al., 2010). Hence, the use of an HA-based scaffold for implanting chondrogenic cells to heal osteochondral cartilage defects is logical and has in fact been shown to be effective for in vitro chondrocyte culture and for animal models of cartilage injury (Chung and Burdick, 2009; Liu, et al., 2006; Toh, et al., 2010). In cardiac development, HA interacts with another lectican, versican, in the cardiac ECM while playing a crucial signaling role in endothelial cell migration and transformation (Camenisch, et al., 2000). Successful use of HA-based hydrogels in the study of cardiac development logically follows (Young and Engler, 2010). Importantly, since all lecticans including neurocan and brevican are also expressed in the nervous system (Yamaguchi, 2000), HA plays a crucial role in the brain extracellular matrix and can provide an excellent substrate for neural tissue engineering (Zhong, et al., 2010).

Matrix choice also depends on the target cell ECM since its matrix compliance and cellular attachment sites present provide differentiation cues for the cells (Engler, et al., 2006; Flaim, et al., 2005; Soen, et al., 2006). With respect to ECM compliance, stem cells are like chameleons—they assess their current substrate compliance and figure out which cells they need to differentiate into so that the compliance of their new ECM matches. For example, a matrix stiffness of less than 1 kPa induces mesenchymal stem cells to become neural-like ((Engler, et al., 2006); Fig. 2), suggesting softer hydrogels are more appropriate for CNS applications (Zhong, et al., 2010). For this reason, it is important to use a matrix whose compliance matches that of the target tissue/cell ECM. A comparison of different matrix compliances is shown in Figure 2. Like matrix stiffness, the appropriate mixture of polypeptide sequences representing cellular attachment sites will likely need to be matched to the cell type and application. While there are hydrogels engineered to contain the RGD peptide for cellular attachment (Alsbeg et al., 2001; Raeber et al., 2005), this peptide will likely not be sufficient for each application to maximize differentiation down an specific path (Flaim, et al., 2005; Soen, et al., 2006).
While not a property of the cell or target tissue, a final criterion from a practical standpoint to consider is the use of potentially noxious crosslinking mechanisms since both the reagents used and/or the conditions to catalyze gelation can cause aberrant cell behavior or cell death. For example, UV light is used to photoinitiate radical chain polymerization of macromolecules functionalized with vinyl groups (e.g. PEGDA, HA methacrylate). Cytotoxicity must be evaluated in the presence of specific photoinitiator concentrations and UV light intensities (Bryant and Anseth, 2006). An additional example is the use of calcium as a crosslinking agent for alginate-based hydrogels. While alginate has been successfully used for culturing a variety of cell types (Alsberg, et al., 2001; Xu, et al., 2006), calcium has also been shown to reduce cellular viability in Sertoli cells with extended exposure during encapsulation (Luca, et al., 2007).

2.4.2 Physician criteria
For a doctor to adopt a new technology, it must satisfy the needs of all stakeholders involved in a patient’s care. These include the surgeon transplanting the cells, the assisting nurse who prepares the hydrogel and cell mixture, the patient, and the payer. While all stakeholders have a vested interest in the hydrogel matrix improving cellular survival, arguably the most important are the physician and assisting nurse who find convenience of use crucial (Reiner, 2009). Critical variables affecting convenience include speed of hydrogel dissolution in clinically relevant buffers (e.g. lactated ringer’s solution), number of vials required to reconstitute the hydrogel, and speed of gelation of the hydrogel/cell mixture prior to injection. Of these, speed of gelation may be the most important since too fast of
The Use of a Hydrogel Matrix as a Cellular Delivery Vehicle in Future Cell-Based Therapies: Biological and Non-Biological Considerations

Gelation precludes facile injection of the hydrogel/cell mixture. Too slow of gelation may not properly localize the incorporated cells since they may either settle to the bottom of the injected bolus, the bolus may begin to disperse, or the very motion of an organ may cause the bolus to ooze out (Martens, et al., 2009). A comparison of the different matrices’ gelation times are shown in Table 2

<table>
<thead>
<tr>
<th>Fast (< 5 min)</th>
<th>Medium (10-20 min)</th>
<th>Slow (60+ min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corgel</td>
<td>Matrigel</td>
<td>Purecol</td>
</tr>
<tr>
<td>Fibrin</td>
<td>HyStem-C</td>
<td>Puramatrix</td>
</tr>
<tr>
<td>PEGDA</td>
<td>Q-gel</td>
<td></td>
</tr>
<tr>
<td>Alginate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RGD-alginate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Gelation times of hydrogel matrices

2.4.3 Non-biological criteria

2.4.3.1 Introduction

While the first two sets of criteria have focused on the science behind cell delivery vehicles, this third set of criteria is a dramatic departure representing key concerns surrounding the development of any human therapeutic. That is, the question must be answered: can it be made profitably and in compliance with regulatory standards? With the increasing levels of research activity in stem cell therapy and tissue engineering, it is expected that many novel stem cell delivery vehicles in addition to different injectable hydrogels will emerge. Indeed, there are already numerous reports in the medical literature of the use of a wide variety of matrices and scaffolds with stem cells and range from synthetic polymers (James, et al., 2011), cell extracts (Rajasingh, et al., 2008), to de-cellularized tissues such as small intestinal mucosa, urinary bladder basement membrane and mucosa, skin, heart, and fat (Badylak and Gilbert, 2008; Flynn, 2010). Nevertheless, all of them must overcome the last and perhaps the most difficult hurdle: commercialization and regulatory approval for human use.

Commercialization is the conversion of a technology into a profitable product and this is usually done by a for-profit institution. Its financial support and guidance are required to fund and navigate an efficient path to the clinic and then to the marketplace. The first step in this process is typically the licensing of the technology’s rights from the academic medical institution (Poltorak and Lemer, 2004). However, the majority of these matrices and scaffolds will never be licensed since they cannot be patented or be made profitably. From an intellectual property standpoint, the lack of commercial viability for these materials typically arises from the absence new or novel intellectual property that can be protected by patent. Without patent protection, the ability to maintain a competitive advantage in the marketplace is absent and hence the potential to make a highly profitable product is compromised. If the technology survives IP landscape scrutiny, the cost in manufacture must be significantly less than the price acceptable to the marketplace. In general, there is a high manufacturing cost for biomaterials derived from animal or human sources (including costs for both raw materials and for cGMP manufacture especially in the beginning when low volumes of materials are prepared (Thompson, 2006)). Finally, the path to regulatory approval can be expensive and treacherous.
Successful translation of basic research in tissue engineering and regenerative medicine to clinical applications demands a thorough understanding of a number of regulatory issues for the therapeutic cell as well as the delivery matrix or scaffold. The remainder of this section will focus on describing the regulatory approval path for combination stem cell/matrix products as well as general considerations surrounding cGMP manufacturing.

2.4.3.2 Regulatory

Since a matrix will be combined with the stem cell, two distinct centers within the FDA share the regulatory responsibilities. Cell-based products are regulated by the Center for Biologics Evaluation and Research (CBER) (FDA, 1997). Therapeutic products consisting of stem or progenitor cells delivered to the body in a matrix or implanted in a scaffold however are considered combination products where the matrix or scaffold is a medical device and the cells the new therapeutic agent. CBER will request consultation from the Center for Devices and Regulatory Health (CDRH) for guidance in device approval issues. CBER’s final approval will be for a specific delivery matrix and cell type for a clearly defined indication. As a result there is no pathway, at this time, for approval of a matrix or scaffold as a medical device for general cell delivery for stem cell therapy applications.

From the cellular standpoint, the regulatory path for somatic cells and tissues and for stem cells is similar since the former serves as the basis for the latter. Since 1993, the FDA has been developing guidelines and regulatory pathways to regulate the development, manufacture and distribution of somatic cell therapy products. Over the last decade these guidelines have been broadened to include stem and progenitor cell therapeutic products. These guidelines are designed to ensure that such products meet defined safety requirements and have the identity, strength, quality and purity characteristics as those represented to the FDA. In addition, the FDA has recently mandated that any procedure in which human cells manipulated for clinical use are subject to federal manufacturing standards and oversight (18 21 C.F.R. § 1271.3(d) (2009); see 42 U.S.C. § 264). Specifically, Part 1271 of Chapter 21 of the Code of Federal Register unifies the registration and listing system for establishments that manufacture human cells, tissues, and cellular and tissue-based products (HCT/Ps) and establishes current good tissue practices, and other relevant procedures. These regulations, known as the Good Tissue Practice (GTP) requirements, encompass the minimal manipulation of cells for clinical use; i.e. for processes that do not alter the biologic characteristics of the cells (21 CFR Parts 16, 1270, 1271). For procedures in which the biologic nature of the cells is altered to affect a clinical outcome, termed “more than minimal manipulation,” Part 211 pharmaceutical cGMP will apply, as well as relevant aspects of Parts 210, 600 and 1271. In addition to these base requirements, any stem-cell-based product that contains cells or tissues that “are highly processed, are used for other than their normal function, are combined with non-tissue components, or are used for metabolic purposes would also be subject to the Public Health Safety Act, Section 351, which regulates the licensing of biologic products and requires the submission of an investigational new drug application (IND) to the FDA before studies involving humans can begin. (21 C.F.R. Part 312 (2009); (Carpenter, et al., 2009))

From the matrix standpoint, its regulatory path depends on which medical device classification it is assigned within the FDA. If the device has not been previously approved
or cleared for its intended use, detailed device information must be included in the investigational new drug (IND) submission for a Center for Devices and Radiological Health (CDRH) consult review. It is also recommended that a Device Master File (DMF) be submitted to CDRH (a DMF provides confidential information surrounding manufacture and can be referenced by a sponsor in support of an IND application (FDA, 2011; Read and Khuu, 2009)). In applications where the matrix and cells are used topically, such as wound healing, the delivery matrix is usually classified as a class II medical device. However, when the cells are injected or implanted within the body in a matrix to promote attachment and proliferation of the therapeutic cells, these delivery vehicles are classified as class III medical devices (21 CFR, 860.93; 21 U.S.C., 360c (c)(2)(C)). The scope of the information required in a DMF varies only slightly between class II and class III medical devices with the class II devices requiring less biocompatibility testing. For class III, permanently implanted or resorbable, medical devices, biocompatibility of the device alone is assessed through the prescribed in vitro and in vivo animal testing asset set forth in the ISO-10993 guides. These tests encompass cytotoxicity, sensitization, irritation, acute and chronic systemic toxicity, genotoxicity, and long term implant with histopathology.

In addition to the demonstration of biocompatibility for the matrix alone as described above, the interaction of the therapeutic cells and their delivery matrix or scaffold must also be characterized for safety and toxicology. Such studies should demonstrate that the matrix or scaffold does not alter the function of the cells in such a way as to raise safety and toxicity concerns. In addition to a thorough characterization of the delivery matrix and its interaction with the therapeutic cells, CBER will request complete documentation on the source and manufacture of the cells, dosing studies, and clear evidence of efficacy. While cell specific issues are beyond the scope of this discussion, they are a major part of any IND submission.

2.4.3.3 cGMP manufacturing

Of equal importance to biocompatibility, safety, and toxicity, is the requirement for manufacture and testing of these cell delivery devices with appropriate quality assurance and quality control to meet FDA standards. To this end, manufacturing and testing in compliance with current Good Manufacturing Practices (cGMP) regulations following validated production and analytical testing protocols is required. What is cGMP? While this is the subject of a book chapter unto itself, at its heart it is a quality system which pervades every step of the product and process development. Validation is a critical part of cGMP manufacture and provides the basis for a program which provides documents assuring both proper systems functioning and final product which meets required specifications. It requires analytical methods development and validation, as well as production of engineering batches, process validation batches, and clinical trial material (Beckloff, 2008). Proper validation specifically for manufacturing procedures and analytical testing protocols for the Chemistry, Manufacturing, and Controls section of a DMF is arguably the major commitment of time and money in cGMP manufacture and should be addressed early the device development strategy.

As a final note, a question that frequently arises is: when a supplier claims their products are “cGMP quality”, what does this mean? Suppliers of matrices or scaffolds for basic research often represent their products as being made in a cGMP compliant facility. Does this mean that their products are “cGMP quality”? Such statements should be viewed with caution.
As with other industries where quality is crucial, a rigorous audit from an independent regulatory body is required to assure an institution is in substantial compliance with the quality system that the institution follows. Hence, until such time as the FDA has inspected a manufacturing facility and issued a Form 483 listing inspectional observations in response to a specific IND application, there can be no assurance that the manufacture of the device is indeed in substantial compliance with cGMP requirements.

3. HyStem applications in stem cell therapy

While a number of hydrogel matrices will substantially fulfill the criteria described, those matrices which are customizable have a distinct advantage since all stem cells are not created equal. To maximize its utility across a wide range of stem cells and indications, a hydrogel matrix whose composition can be easily modified by the end user is an important feature. The HyStem hydrogel platform is well suited for cell delivery of numerous stem cells since it not only mimics a variety of microenvironments with its basic HA formulation (vida supra), but it can be easily adapted to add functionality. The HyStem family of HA-based hydrogels are based on crosslinking HA, gelatin, and heparin with PEGDA using Michael addition chemistry (Zheng Shu, et al., 2004). These three components are modified with thiol groups and used as modules to make three different HA-based hydrogels: HyStem® (thiolated HA), HyStem-C (same as HyStem plus thiolated gelatin for cellular attachment), HyStem-HP (same as HyStem-C plus thiolated heparin for slow growth factor release) (Serban and Prestwich, 2008). Each component is thiolated using EDC/NHS chemistry followed by crosslinking at physiological pH and temperatures via Michael addition using the acrylate groups in PEGDA (Zheng Shu, et al., 2004). Importantly, HyStem’s formulation can be further customized by covalent introduction of a variety of molecules compatible with HyStem’s thiol-based chemistry. For example, molecules such as cellular attachment peptides with an acrylate or a free cysteine thiol group can be covalently crosslinked into the matrix (Zheng Shu, et al., 2004). In addition, matrix compliance can be modulated by the concentration PEGDA used (Hanjaya-Putra, et al., 2010; Vanderhooft, et al., 2009). Below we highlight three of the newest stem cell applications using HyStem technology.

3.1 Stroke

Stroke is highly prevalent with 550,000 hospitalizations and 150,000 deaths annually in the US alone (Taylor, et al., 1996). While current treatments do little to recover lost function due to cerebral damage, direct implantation of neural stem or progenitors into the infarct cavity may be effective in repair and eventual recovery (Zhong, et al., 2010). The challenge in this approach is that stem and progenitor cells die en masse shortly after transplantation (Bliss, et al., 2007). A solution is to deliver the therapeutic cells in an HA-based cellular delivery vehicle. HA provides a biomechanic of the brain microenvironment since HA is abundant in the brain ECM (Fraser, et al., 1997; Ruoslahti, 1996), shares brain mechanical properties (Hou et al., 2005) and is conducive to neural growth (Wei, et al., 2007).

HyStem-HP hydrogel was recently used to deliver neural progenitors into a brain infarct cavity (Zhong, et al., 2010). One week after infarct transplantation in HyStem-HP hydrogel, cellular survival of mouse neural progenitor cells doubled, cell distribution was highly localized, and activated microglia/macrophages were excluded from access to the cells
The Use of a Hydrogel Matrix as a Cellular Delivery Vehicle in Future Cell-Based Therapies: Biological and Non-Biological Considerations

Importantly, HyStem-HP’s use is congruent with current stroke therapy procedures since it can be administered via a catheter or cannula through a burr hole using computed tomographic (CT) guidance (Montes, et al., 2000).

3.2 Cartilage repair
Degenerative joint diseases affect approximately 20% of the adult population and cost nearly US $30 Billion dollars annually to treat (CDC, 2007; Grayson, et al., 2008). Two current treatments involving transplantation of autologous cartilage from other parts of the joint (mosaicplasty) or transplantation of expanded chondrocytes (Carticel) are non-ideal solutions since the transplanted tissue poorly integrates while causing damage to the donor area of joint (Grayson, et al., 2008). One solution is the transplantation of hESC-derived chondrocyte progenitor cells since the large quantities of the cells can be produced. In addition, they have the ability to fully differentiate into chondrocytes which induces cartilage ECM synthesis and hence better integration (Toh, et al., 2010). The delivery of these cells benefit from a hyaluronic acid based matrix since HA plays a key structural and biological role in cartilage ECM (vida supra).

Recently two successful approaches using HyStem-C have been reported: the first uses autologous bone-marrow derived mesenchymal stem cells which are injected and localized with HyStem-C in an full-thickness osteochondral defect in rabbits (Liu, et al., 2006); the second, while not an injectable therapy, also uses HyStem-C and serves to show its utility (hESC-derived chondrogenic cells are precultured in HyStem-C before implantation in rats (Toh, et al., 2010)). In both cases, healing was rapid and significant: In 4-6 weeks, a new smooth regenerated cartilage surface begins to form; by 8-12 weeks, smooth, hyaline-like cartilage has completely filled the defect with excellent integration (Liu, et al., 2006; Toh, et al., 2010). Importantly, the regenerated tissue abundantly expresses Collagen type II and proteoglycans indicative of hyaline cartilage (Toh, et al., 2010).

3.3 Stem cells as therapeutic carriers
Neural stem cells (NSCs), mesenchymal stem cells (MSCs), and endothelial progenitor cells can be used to selectively target and eradicate invasive and inoperable cancers because they migrate towards cancerous cells and can be engineered to overexpress and secrete therapeutic payloads. These therapeutics include apoptosis-inducing proteins (Sasportas, et al., 2009), suicide proteins such as cytosine deaminase in the presence of 5-fluorocytosine (Aboody, et al., 2006), and specific monoclonal antibodies (Dudek, 2010; Frank, et al., 2010). In addition to minimizing side effects due to systemic chemotherapy treatments and their side effects, this approach obviates the need to contend with crossing the blood-brain barrier for CNS applications and repeated treatments of potentially unstable proteins (Frank, et al., 2010; Roth, et al., 2008). Much like stem cells used for tissue regeneration, these engineered stem cells benefit greatly from extended survival time with encapsulation in a matrix since the temporal window of therapeutic treatment is extended.

In a recent study, 10^6 MSCs were genetically modified to overexpress a recombinant bispecific antibody (MSC^dAb) and injected subcutaneously within Extracel-X® in mice (Extracel-X is based on HyStem technology and specifically designed for mouse tumor xenografts). MSC^dAb implanted with Extracel-X survive at least 12 days longer, secrete up to 145 ng antibody/ml plasma over 42 days, and halts HCT-116 tumor xenograft growth (Compte, et al., 2009). In theory, this approach can be extended to improving tissue repair.
and regeneration since stem cells can be engineered to express a variety of growth factors and/or signaling molecules to encourage orthopedic tissue repair for example (Hoffmann, et al., 2006; Sheyn, et al., 2008).

4. The future of cell delivery vehicles

While the discussion so far has focused on hydrogels as injectable vehicles congruent with minimally invasive surgery, it would be arrogant and limiting to assert that hydrogel matrices are the only type and form of matrix that can be used. In fact, a number of biomaterials can be incorporated into these procedures and offer significant advantages over traditional scaffolds and in vitro established structures (Burg and Boland, 2003; Ochi, et al., 2004; Thornton, et al., 2004). One area where additional biomaterial options will play a significant role is in minimizing stem cell manipulation prior to implantation. Cellular manipulation is proportional to the extent to which cells have been changed ex vivo. In addition, cell expansion and encapsulation constitute more than minimal manipulation (Hellman and Smith, 2006). The level of cellular manipulation is becoming more heavily scrutinized and can influence the practicability of implementing a proposed cell-based therapy. Currently, the FDA guidelines regulate "highly processed" more stringently than "minimally manipulated bone marrow", so it is advantageous to reduce processing of cellular components (Burger, 2003; Halme and Kessler, 2006). Cell delivery vehicles that can address both requirements for minimally invasive surgical techniques and reduction of cellular manipulation will clearly play a significant role in future of cell based therapies.

Researchers have investigated both synthetic and natural biomaterials that can be adapted to relevant surgical techniques. Few, however, minimize cellular manipulation. Thornton et al, reported a macroporous alginate hydrogel that can be temporarily deformed for delivery through a small catheter and then expanded in situ to their original physical dimensions, these types of materials are also known as shape-memorizing or defining scaffolds (Thornton, et al., 2004). While these can be utilized in minimally invasive techniques they are unable to fill irregularly shaped defects and do not address the biological requirements of numerous stem cells. Elisseeff et al, have developed photopolymerizable synthetic polymers that can be injected as a monomer solution and then cured using transdermal ultra-violet light (Elisseeff, et al., 1999). These concepts allow for catheter deliver and irregular defects but again do not address the biological needs of cells nor the issue of reducing cell manipulation. Finally, numerous types of microcarriers have been proposed as potential cell delivery vehicles. These small spheres on the order of 10-500 mm are often used to encapsulate cells as with alginate, or are highly porous structures that provide high surface area to attach cells, as with PLGA microcarriers. Burg and Boland have reported a composite system that combines an injectable gel delivery vehicle with polymeric microspheres for additional support and cell attachment sites (Burg and Boland, 2003). While novel, this idea misses a crucial benefit of microcarriers role in cell therapy - the ability to reduce cellular processing by expansion on the microcarriers themselves followed by minimally invasive delivery to targeted sites.

A microcarrier culture system that doubles as an expansion substrate and delivery vehicle for human MSCs (hMSC) would be ideal. This concept permits seamless expansion and transplantation of cells for therapy. Besides substantially decreasing the need for tissue culture space (compared with traditional 2D tissue culture plastic expansion) and the
possibility of contamination risks (no need for enzymatic passaging), a biologically relevant microcarrier would provide the requisite scaffold to improve a cell’s survivability and localization post-transplantation.

There are a wide variety of microcarriers commercially available such as polystyrene-based MicroHex (Nunc) and Plastic Plus (SoloHill) which is compatible with hMSC, however few are biodegradable and even fewer can provide the biological cell requirements. Commercially available biodegradable microcarriers are suboptimal as delivery vehicles for hMSC as their compositions are not physiologically relevant for this stem cell type. Poly(d,l-lactic- co-glycolic acid) (PLGA) and poly (l)-lactic acid (PLLA) microcarriers do not provide a supportive microenvironment after implantation and they degrade to the acidic by-products, lactic acid and glycolic acid. Cultispher microcarriers (Percell Biolytica AB) - crosslinked, porous porcine gelatin microcarriers - have limited utility for regenerative medicine applications using hMSC. Neither collagen nor gelatin bind to the abundant hMSC CD44 (hyaluronic acid, HA) receptors required for function and the introduction of animal-derived components can lead to additional FDA regulations.

A solution is to prepare microcarriers from a physiologically relevant biomaterial for stem cells which can serve as both an expansion substrate and delivery vehicle. This dual functionality is advantageous as it can reduce the cellular manipulation by eliminating enzymatic treatments to recover cells and can then be delivered either alone or within additional gel via minimally invasive catheter techniques. HyStem-based microcarriers have been recently produced using reverse emulsion techniques, i.e. water in oil polymerization methods (Figure 3). Unlike Cultispher microcarriers, HyStem offers users control over composition and matrix elasticity for ease in customizing future microcarriers. A variety of growth factors, cellular attachment domains, or peptides may be added to customize its formulation (Serban and Prestwich, 2008; Ventura, et al., 2004). In addition, matrix elasticity is easily modulated (Vanderhooft, et al., 2009) and is likely to be of paramount importance for applications involving hMSC transplantation (Engler, et al., 2006).

Fig. 3. Mouse fibroblast cells (NIH 3T3 line) seeded on HyStem microcarriers at day 1 (A), 4 (B), and 6(C)

5. Conclusion

In summary, a cellular delivery matrix in regenerative medicine extends the survival of the transplanted cells so that their chances of remodeling their microenvironment or delivering
a meaningful therapeutic payload are significantly enhanced. In the context of tissue repair, the use of degradable polymer scaffolds is crucial since it provides a tractable substrate for cells to remodel while providing space and a temporary home. For cell delivery matrices to be useful, however, they must also satisfy non-biological related concerns: From the physician’s point of view, injectability and ease of use are of paramount importance. From the commercial point of view, it must be patentable and its surrounding patent landscape must also be favorable (i.e. the intellectual property (IP) has to be novel, non-obvious, and useful as well as unencumbered by potential blocking IP). The market must also be substantial, and the product has to have a significant profit margin in part due to economical manufacture (i.e. raw materials and cGMP costs are low) and the marketplace’s acceptance of a fair price.

As a final thought, while there is a great deal of academic excitement and publication activity surrounding the development of ever-increasingly complex cellular delivery matrices that can replicate a new aspect of a stem cell niche (Engler, et al., 2006; Phillips, et al., 2008; Reilly and Engler, 2009; Stern, et al., 2009; Wosnick and Shoichet, 2008), the question is: after a point, when is more complexity in a cellular delivery vehicle too much? The resulting products may become highly unique and patentable from an IP standpoint but from a manufacturing point of view, as the number of components or complexity in manufacturing process increases, manufacturing cost may increase dramatically and block its commercialization. More importantly, from the developmental point of view, do we really need to recreate what nature does by adding every last detail of intricacy into an ECM for a stem cell whose residence time in a developmental intermediate state may be fleeting and only require the intricacy for a moment in time? (Sands and Mooney, 2007).

One strategy for designing an optimal stem cell delivery vehicle is to mimic what nature does during early embryonic development—simply provide a simple, malleable substrate that the embryonic cells can tailor according to their needs. An embryonic cell is in a constant tug-o-war with its surroundings where the cell is exerting a specific force on the ECM or neighboring cell via its acto-myosin cytoskeleton (Ingber, 2006). However, the embryonic organs in which these cells reside likely decide what that specific tension will be based on its physical demands at each of its developmental stage (Mammoto and Ingber, 2010). It is these developmental cues which likely drive the trajectory of the ECM remodeling and cellular differentiation. As an example, let’s examine the embryo heart development: initially the embryo is highly compliant (< 10 Pa) into which mesoderm cells penetrate (Reilly and Engler, 2009). There is an eight-fold increase in the developing heart tissue stiffness (Young and Engler, 2010), suggesting that its ECM is constantly being remodeled. In the end, the fully differentiated heart has a stiffness of 10 kPa which provides enough stiffness and stability to allow myocardial cells to generate enough traction to contract against for normal heart beating. In essence, the cells and the ECM are co-developing. Since a variety of stem cells are derived from embryos at various stages, the possibility exists that a simple hydrogel which the stem cells like and can remodel is all that is needed, leaving the building of complexity to nature.

6. Acknowledgements

We thank Dr. Mariluz Henshaw for critical reading of the manuscript.
7. References

The Use of a Hydrogel Matrix as a Cellular Delivery Vehicle in Future Cell-Based Therapies: Biological and Non-Biological Considerations

Cockle Shell-Based Biocomposite Scaffold for Bone Tissue Engineering

Zuki Abu Bakar, Bahaa F. Hussein and Noordin Mohamed Mustapha
Faculty of Veterinary Medicine, Universiti Putra Malaysia
Malaysia

1. Introduction
Bone transplantation is a rapidly growing and expanding field, and has a significant impact on improving the quality of life of patients suffering from bone tissue damage and disease. Bone is the second most frequently transplanted tissue in humans after the blood. Secondary bone tumour, trauma or deformity often presents a significant problem for bone surgery (Boyne et al., 2002). Grafting is regularly used in medical procedures to replace damaged tissue. Bone grafting involves replacing damaged bone with harvested bone from donors or from another location within the body. Traditionally, bone graft treatments, such as autografting, allografting, and xenografting were used to replace or repair damaged bone tissue. These processes can be long, painful, and have the possibility of being rejected by the body. Autografts are osteoinductive, osteoconductive and have osteogenic properties (Cypher and Grossman, 1996). Although autografts are considered the gold standard of bone transplantation, they also have certain limitations due to possible donor site morbidity, low tissue availability and may introduce additional medical complications (Younger and Chapman, 1989; Moore et al., 2001). Allografts are grafts made of tissue from a human donor, usually during post-mortem. This method rules out the limitations of autografts technique, but have their own limitations including donor shortages and risks of infections. Xenografts are bone grafts from different species such as bovine, porcine or coralline bone that can be implanted into human graft site. Xenografts offer the advantage of availability in a variety of shapes and sizes, but they are also subjected to problems of immunogenicity and have the tendency to denature or decompose in room temperature (Vaccaro et al., 2002). Distraction osteogenesis is another technique for bone treatment used to promote bone growth using the body’s innate bone-healing mechanisms. The process is lengthy and painful, in which the two sides of a bone fracture are separated by a short distance every few weeks until the desired length of bone has been regrown (Chang et al., 2004). Other treatment options, the man-made devices, such as bone cement fillers and prosthetics made of metals, ceramics and polymers are also used for bone defect repair or replacing damaged bone tissue. All the conventional methods for bone repair and replacement can be long, painful and have the possibility of being rejected by the body (Ducheyne et al., 1992). Alternative approaches have been heavily researched and investigated based on a tissue engineering strategy, in an effort to overcome the inherent limitations of the currently available solutions to bone defects. In this approach, a tissue engineered bone is produced by seeding cells that can become osteoblasts on highly porous biomaterials (Hardin-Young et al., 2000).
Tissue engineering is one of the most exciting and rapidly growing areas of biotechnology. According to Williams (1987), tissue engineering is defined as an interdisciplinary field that applies the principles of engineering and the life sciences toward the development of biological substitutes that restore, maintain or improve tissue function. These substitutes are generally known as “scaffolds”. The concepts of tissue engineering is to engineer autografts, by expanding autologous cells in vitro guided by a scaffold (artificial matrix), or by implanting an acellular scaffold in vivo and allow the patient’s cells to repair the tissue guided by the scaffold. In both ways in vitro or in vivo, tissue engineering utilize a scaffold (supporting structural device), osteogenic cells and bioactive factors either alone or in various combinations (Meyer et al., 2004b). The scaffold should be made of a biocompatible and bioresorbable material that degrades and disappears over time with the regeneration of tissues, so that once the tissue has developed the scaffold no longer exists as such and the newly formed tissue can perform the function of the damaged tissue (Ross, 1998). Therefore, tissue engineering offers a potential approach to create tissues, organs and synthetic graft products under laboratory conditions to overcome the problems of implant rejection, transmission of diseases associated with xenografts and allografts, and shortage in organ donation.

The main target for bone tissue engineering is bone repair, and it can be used for healing or repairing wide range of bone defects. There are many different strategies which may be used to develop bone tissue engineering. One such strategy involves seeding autologous osteogenic cells in vitro along a biodegradable scaffold to create a scaffold–cell hybrid that may be called a tissue-engineered construct. Osteoblasts, chondrocytes and mesenchymal stem cells obtained from hard and soft tissues of the patient may be expanded in culture and seeded onto a scaffold that should in some way fade away to allow an entirely natural bone tissue replacement (Langer and Vacanti, 1993). Millions of patients with bone problems worldwide each year could benefit from this new therapeutic strategy (Buckwalter, 2004; Holtorf et al., 2005).

Scaffolds are the key to the development of tissue engineered bone construct for implantation into the bone critical defect. Successful tissue generation in vitro and/or in vivo requires highly specialized artificial bone substitutes, since they serve as a model in three dimensions for the interposition of tissue mimicking the extracellular matrix for adhesion and cell proliferation, differentiation and must also provide support to protect the tissue in the early stages of healing (Freed et al., 1994b). Many artificial bone substitutes that introduced to maintain the function of bone containing metals, ceramics and polymers. Each material has specific disadvantages, and none of them can fully substitute for autografts in current clinical practice. More importantly, the bone graft substitute must be biocompatible, nonimmunogenic and noncarcinogenic to minimize host response. The bone graft substitute must also possess mechanical properties similar to that of the bone to prevent stress shielding (Hench and Wilson, 1993). Many of artificial bone substitutes, with its high biocompatibility and good bioaffinity, stimulate osteoconduction and are slowly replaced by host bone after implantation. An osteoconductive material allows a series of events of protein adsorption resulting from the anchor of osteoblasts to the surface and subsequent deposition of extracellular matrix and bone (Dziedic et al., 1996). This allows for intimate contact to be made between the implant and surrounding tissue, thus accelerating the natural healing response. Finally, a potential bone graft material should be consistent in use and readily available in unlimited quantity in order to be considered suitable for surgical implantation (Hatcher, 2004).
The success of a tissue engineering scaffold will come into play to determine whether it can support cell attachment, growth and eventually cell differentiation into the appropriate tissue. For these reasons, the biodegradable scaffold must be biocompatible and having porous interconnected network to facilitate vascularization and rapid growth of newly formed tissue (Laurencin et al., 1999; Mooney and Mikos, 1999). Hence, several needs are identified as crucial for the production of scaffolds in tissue engineering. The scaffold should possess a) interconnecting pores of a scale appropriate to promote integration and vascularization of tissues, b) controlled biodegradability or bioresorbability, so that the host tissue will eventually replace the scaffold, c) appropriate surface chemistry to promote cell attachment, differentiation and proliferation, d) mechanical properties sufficient to match the space provided for the implementation and handling, e) not induce a negative response, and f) easily manufactured in a variety of shapes and sizes (Li and Li, 2005).

Given these requirements in mind, several materials have been adopted or synthesized and fabricated into scaffolds. The basic principle of our research work was to apply the tissue engineering strategy that combines osteoprogenitor cells with a new bioceramic scaffold for regeneration of critical size bone tissue defect. The cockle (Anadara granosa) is by far, the most abundant species cultured in Malaysia. A possible advantage of using cockle shell as a biomineral is that they may act as analogs of calcium carbonate present in vivo.

2. Morphological and biomechanical properties of cockle shell-based biocomposite scaffolds

The information from the experimental study showed that the physical and mechanical properties including stiffness, degradability, porosity and mechanical integrity of this scaffold were appropriate for use as extracellular matrix materials for bone tissue engineering. All the scaffolds prepared have pore size between 20-420 µm. The ESEM examinations of the prepared scaffolds as shown in figure 1 revealed that the fabricated scaffolds possessing different sizes of porosity. The physical characteristic of porosity formed in the scaffolds are mainly attributed to the voids containing trapped air that make way to provide spaces for the swelling effect when the scaffolds get wet, and these voids formed between the granules or particles in the bulk material. Our observation on the formation of porosity is in accord with Lam et al. (2002). The macro porosities in the scaffolds were created as the result of homogeneously dispersed air bubbles throughout the mixture by stirrer magnetic machines at 800-900 rpm. The mixture was observed to contain a fine dispersed of air bubbles, after the formation of a dough-like solution. Different wt% of scaffolds solution had a suitable interconnected pores size between 20-420 µm. After evaporation of water by heating the mixture becomes more concentrated and thick, which could be sufficient to block the air bubbles to release and this will lead to an increase in the pores after the mixture dried. Similar finding was reported by Kang et al. (2006). In this study, we used dextran, gelatin, and dextrin in addition to the cockle shell powder as scaffold materials for tissue engineering applications because we thought that we could take advantage of the powders in microsphere processing for scaffold design. The dextran was particularly chosen since it has been shown to be resistant to both protein adsorption and cell adhesion, and allowed designing a scaffold with specific sites for cell recognition (Levesque et al., 2005). The used of dextran for scaffold development not only due to high number of pores created but also their morphology which was more rounded, and the
degree of interconnectivity observed were highly influenced by the amount of dextran. In fact, the natural dissolution of dextrin, dextran and gelatin in water was responsible for the porosity formation. Furthermore, it could be attributed to the fact that an increase in gelatin concentration increased the capacity for entrapment of air bubbles and particle-induced pores in the matrix (Askarzadeh et al., 2005; Levesque et al., 2005). Therefore, an inversely proportional relationship between the compressive stiffness and porosity was established due to the increased in pores and the degree of interconnection between pores. Also, there is a proportional relationship between the amount of pores in the scaffold and the degradation rate due to an increase in the surface area. The scaffolds prepared by freeze-drying had dual pore structures caused by air bubbles and ice crystals, for freezing the dispersion or solution results in the formation of ice crystals that force and aggregate the collagen molecules into the interstitial spaces. The ice crystals were then removed by freeze-drying. Also, the conventional freeze dried scaffold formed only small pores as a result of a fast freezing rate, and the ice crystal agglomeration can controlled the pore size as showed in figure 2. These results are consistent with the results of Levesque et al. (2005) and Sachlos and Czernuszka (2003).

Fig. 1. ESEM microphotographs of scaffolds prepared by heated method showing porous structure. A) scaffold 244 and B) scaffold 334

Fig. 2. Phenom SEM of the scaffolds prepared by freeze drying method show high porosity with different pore sizes and high interconnectivity. A) scaffold 244 and B) scaffold 352
Micro porosities may increase the degradation rate of the scaffolds due to the increased surface area available for attack. Scaffolds prepared with the freeze dryer method exhibit higher porosity. Accordingly, different scaffolds porosity and outer solid layer thickness was achieved by these two methods, which have direct influence on their degradation behaviour. In our study the scaffolds cross linked produced by heating method show a decrease in the acceleration and degradation rate. This result is in contrast with Oliverira and Reis (2004), who mention that most of the scaffolds lose half of their strength almost after the first days of immersion in the liquid, and the continuous soaking in the liquid will displayed only 5% of their initial strength and had lost almost half of their starting mass. In contrast, our study showed that the scaffolds dimensions did not change significantly during the degradation evaluation for up to 10 and 30 days for scaffolds prepared by freeze drying and heating methods, respectively. Thus, the decline in mechanical properties for these scaffolds is due to excessive mass loss, which was caused by the increased in porosity of the scaffolds. Scaffolds prepared by freeze drying method characterized by a rapid degradation than those fabricated by heating method, which was related to the short chains of amorphous product, consequently, this leads to increase in the number of sites susceptibility to chain scission (Porter et al., 2001). The scaffolds prepared by freeze drying method exhibit significantly (P<0.05) higher water uptakes, compared to the samples prepared by heating method which have higher porosity. Nevertheless, the scaffolds produced in our study by both methods might be very useful in situations where a high mechanical property is necessary.

There is a conflict between a high porosity and the mechanical compression properties of the scaffolds. Dry infiltrated scaffolds 262 and 226 demonstrated lower mechanical properties (Table 2), which probably due to the higher porosity and interconnection between pores of the scaffolds prepared with this method. Although these porous structures are most appropriate for the final application of these scaffolds, still these scaffolds provide a good mechanical property when compared with other scaffolds that obtained from other biodegradable polymers which presented a compression module below 12 MPa, and proposed for use in tissue engineering of bone, for example, PLLA/hydroxyapatite composite foam (Zhang and Ma, 1999). Maria (2004) method for preparing more than one type of scaffolds was consistent with our technique. She used different processing methods to produced different scaffolds of different geometries, and the samples tested have also different geometries and dimensions.

The compression tests of scaffolds were carried out to obtain the stress-strain relations from which the yield strength and modulus were evaluated. The significant increase in modulus and yield strength for the scaffold can be attributed to the strong interactions between the four materials that form the scaffolds, and one of the major challenges in the fabrication of porous scaffolds is the tradeoff between adequate material porosity and mechanical strength (Thomson et al., 1995b; Porter et al., 2000; Zhensheng et al., 2005). However, some of the scaffolds posses the similar yield strengths, which suggested that polymer infiltration, did not affect the yield strength of the dry sample. It was noted that for the porous designs, there was a significant increase in the yield strength in some because of different porosity scaffold after polymer infiltration. This reinforced the theory by infiltration with polymer to improve the mechanical properties of the scaffolds (Lam et al., 2002). The role of gelatin in compression mechanical test was to provide support of the mechanical compression, and these were formed by the changes of chain of amino acids by cross linked. Thus the initial modulus of scaffolds gradually increased with increasing concentrations of gelatin in the
mixture solution for both freeze-dried and heating stirrer-processed (heat method). This varying in mechanical property may be due to the increase and decrease of the scaffolds porosity, as showed in table 1. The decrease in the modulus MPa of scaffolds was due to the increase in scaffold porosity. Our finding agreed with what was reported by Kang et al. (2006). The variation in the ratio of gelatin to other materials, the degree of porosity composite and the degree of crosslinking may influence on modulus and ultimate compression test of the specimens.

<table>
<thead>
<tr>
<th>No.</th>
<th>Sample</th>
<th>Yield strength MPa</th>
<th>Modulus MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>244</td>
<td>Dry uninfiltrated</td>
<td>11.43</td>
<td>144.5</td>
</tr>
<tr>
<td>244</td>
<td>Dry infiltrated</td>
<td>13.95</td>
<td>182.3</td>
</tr>
<tr>
<td>244</td>
<td>Wet infiltrated</td>
<td>1.946</td>
<td>0.696</td>
</tr>
<tr>
<td>262</td>
<td>Dry uninfiltrated</td>
<td>3.628</td>
<td>74.57</td>
</tr>
<tr>
<td>262</td>
<td>Dry infiltrated</td>
<td>3.429</td>
<td>20.74</td>
</tr>
<tr>
<td>262</td>
<td>Wet infiltrated</td>
<td>0.132</td>
<td>0.428</td>
</tr>
<tr>
<td>352</td>
<td>Dry uninfiltrated</td>
<td>13.19</td>
<td>187.5</td>
</tr>
<tr>
<td>352</td>
<td>Dry infiltrated</td>
<td>9.676</td>
<td>71.41</td>
</tr>
<tr>
<td>352</td>
<td>Wet infiltrated</td>
<td>0.394</td>
<td>0.751</td>
</tr>
<tr>
<td>334</td>
<td>Dry uninfiltrated</td>
<td>7.271</td>
<td>123.1</td>
</tr>
<tr>
<td>334</td>
<td>Dry infiltrated</td>
<td>5.801</td>
<td>33.24</td>
</tr>
<tr>
<td>334</td>
<td>Wet infiltrated</td>
<td>0.007</td>
<td>4.077</td>
</tr>
<tr>
<td>226</td>
<td>Dry uninfiltrated</td>
<td>4.894</td>
<td>48.05</td>
</tr>
<tr>
<td>226</td>
<td>Dry infiltrated</td>
<td>5.250</td>
<td>148.8</td>
</tr>
<tr>
<td>226</td>
<td>Wet infiltrated</td>
<td>2.779</td>
<td>0.639</td>
</tr>
</tbody>
</table>

Table 1. Compressive stiffness (dry uninfiltrated, dry infiltrated and wet infiltrated) measured at 25°C for scaffolds prepared by heat method

The DSC analysis can be used to determine the physical transformations or phase transitions of the bioceramic scaffolds. A melting or glass transition temperature of the material can be determined, which gives an overview of the physical nature of these scaffolds. The melting transition temperature (T_m) is influential when the materials used are crystalline or semi-crystalline. When a glassy region and the stage of glass transition is followed a significant decrease in the graph without other peaks present, an average glass transition temperature (T_g) can be determined. During its melting, the material blend shows two peaks next to each other; the peak found at 97.78-112.97°C is attributed to gelatin, dextran and dextrin melting (Figure 3). These temperatures are compatible with those used to extrude the blends. Also, there are peaks less intense, approximately at 204-245°C which probably related to glass transition temperature (T_g). As the temperature increases the sample eventually reaches its melting temperature (T_m). The melting process results in an endothermic peak in the DSC curve. The ability to determine transition temperatures and enthalpies (thermodynamics and chemistry) makes DSC an invaluable tool in producing phase diagrams for various chemical systems. These results were in accord to that of Marcos et al. (2005). Glass transitions (T_g) may occur as the temperature of an amorphous solid is increased. These transitions appear as a step in the baseline of the recorded DSC signal. This is due to the
sample undergoing a change in heat capacity; no formal phase change occurred as showed in figure 3. As the temperature increases, an amorphous solid will become less viscous. The main application of DSC is in studying phase transitions, such as melting, glass transitions, or exothermic decompositions. These transitions involve energy changes or heat capacity changes that can be detected by DSC with great sensitivity. The melting points and glass transition temperature for these materials are available from standard compilations and the method can show up possible materials degradation by the lowering of the expected melting point. Depends on the molecular weight of these materials, thus lower grades will have lower melting points than expected. This is possible because the temperature range over a mixture of compounds melts is dependent on their relative amount da Silva (2009).

Fig. 3. The graphs show the endothermic DSC peak (denaturation) of the scaffold materials (gelatin, dextran, dextrin and CaCO$_3$) dispersion of the three samples with a maximum at 97.78-112.97°C. The first and second minimum melting peaks of the three samples observed to be semi symmetrical. The thermal signature was that of the scaffolds with the first and second peak of three samples (262, 334, 352)
Fig. 4. The graphs show the XRD pattern of the scaffold products. The peak at 26°θ and 28°θ are characteristic of calcium like graphite, and other peaks are characterized of Calcium. This corresponds well to the specification (Graphite, Ca)
Table 2. Compressive stiffness (dry uninfiltrated and dry infiltrated) measured at 25°C for scaffolds prepared by freeze drying method

<table>
<thead>
<tr>
<th>No.</th>
<th>Sample</th>
<th>Yield strength MPa</th>
<th>Modulus MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>244</td>
<td>Dry uninfiltrated</td>
<td>10.10</td>
<td>2037</td>
</tr>
<tr>
<td>244</td>
<td>Dry infiltrated</td>
<td>12.62</td>
<td>2075</td>
</tr>
<tr>
<td>262</td>
<td>Dry uninfiltrated</td>
<td>23.99</td>
<td>1952</td>
</tr>
<tr>
<td>262</td>
<td>Dry infiltrated</td>
<td>23.70</td>
<td>1898</td>
</tr>
<tr>
<td>352</td>
<td>Dry uninfiltrated</td>
<td>7.141</td>
<td>268.5</td>
</tr>
<tr>
<td>352</td>
<td>Dry infiltrated</td>
<td>4.621</td>
<td>152.4</td>
</tr>
<tr>
<td>334</td>
<td>Dry uninfiltrated</td>
<td>10.80</td>
<td>825.3</td>
</tr>
<tr>
<td>334</td>
<td>Dry infiltrated</td>
<td>9.33</td>
<td>735.4</td>
</tr>
<tr>
<td>226</td>
<td>Dry uninfiltrated</td>
<td>4.871</td>
<td>550.2</td>
</tr>
<tr>
<td>226</td>
<td>Dry infiltrated</td>
<td>5.231</td>
<td>649.4</td>
</tr>
</tbody>
</table>

The XRD data show an increase in the crystal size for all the composites that do not exhibit an increase in compressive strength. This increase in crystal size, however, is not apparent in the micrographs, as the size of the crystals reduced from the XRD data is near the limit of resolution of the ESEM. Thus, the X-ray diffraction pattern of the scaffolds at different samples, no changes in peak pattern of crystallinity could be detected as shown in figure 4. On the other hand, the XRD data seem to indicate a similar mechanism at work in all the composites, namely improved mechanical properties due to smaller crystallites (Mickiewicz, 2001).

3. In vitro evaluation of the osteoblast seeded cockle shell-based biocomposite scaffolds

The ability of bone cells to colonize artificial bone graft substitute material is of clinical importance. Alkaline phosphatase is an early differentiation marker. The ALP activity is a transient early marker of osteodifferentiation in MSCs and is generally a good indicator of differentiation. It was reported that ALP is associated with calcification and an enhanced expression of this enzyme is apparently needed just before the onset of matrix mineralization, providing localized enrichment of inorganic phosphate, one of the components of apatite, the mineral phase of bone (Genge et al., 1988). In the current research work, the ALP results as showed in figure 5 agree with the results reported by many investigators, namely, Toquet et al. (1999), Kose et al. (2003), Park et al. (2004), Datta et al. (2005), and Wang et al. (2007). During the early period (from 5 to 14 days) the extracellular matrix undergoes a series of modifications in composition and organization that renders it competent for mineralization. During this matrix maturation phase, every cell has become alkaline phosphatase positive. Similar results were observed by Lian and Stein (1992). In the current study we observed that the peak activity occurred within 5-7 days, this was in agreement with Park et al. (2004) who reported that a high expression of ALP was prominent at 3 days of the culture. However, this finding disagreed with Kose, et al. (2003) who reported that ALP activity increased over time for all their samples and especially, after 14 days of incubation. The level of the ALP in sample 226 increased again after 14 days and this agrees with Kose et al. (2003) who reported the continuous activity of the cells despite
the calcium deposition in the culture. Thus, in this study an initial rise in activity was expected, followed by a decrease corresponding to further differentiation of the cells, when alkaline phosphatase production slowed. The reduced activity of ALP could be attributed to the fact that more cells cultured on the scaffolds stepped into the next differentiation stage. This was in addition to the intracellular calcium increase which could determine an inhibitory effect. ALP decrease could represent a return to osteoprogenitor cells or maturation to osteocytes, which normally express small quantities of this enzyme. These results were in accord with those of Genge et al. (1988) and Wang et al. (2007). There was a major decline in ALP activity during matrix vesicle mineralization. The decline in ALP activity is very closely coupled with the rapid accumulation of Ca$^{2+}$ by matrix vesicles. It is a highly reproducible and consistent finding and occurs in every instance of vesicle mineralization. ALP is known to be a transient marker of osteoblastic differentiation, being up-regulated initially and down-regulated as differentiation progresses. Figure 5 depicted the ALP activity during the period of osteoblast culture of different samples and this explains why it was possible to see a statistical difference in end-stage markers, such as calcium deposition, when none was seen for the earlier stage marker ALP.

Fig. 5. The ALP activity of osteoblast cells at 5, 7, 14, 21 and 25 days post seeding on different scaffolds. Each bar denotes 1 standard deviation. * Significant difference (p<0.05) (one-sample t-test) within groups

All studies regarding calcium deposition in cultures of osteoblastic cells is a marker of full maturation. There is an important relation between the calcium deposition accumulation cultures and ALP activity. The studies reported here explore this phenomenon and revealed that a consistent marked loss of ALP activity does occur during the matrix vesicles mineralization. The time of onset and the extent of decline in ALP activity were found to mirror almost exactly the time of onset and the extent of Ca$^{2+}$ accumulation by the matrix vesicles of all the scaffolds as shown in Figure 6. Such observations were also reported by
Genge, et al. (1988). The mineral accumulation is a consequence of the progression of pre-osteoblastic cells through the proliferation and matrix maturation stages of differentiation and it is an essential step for the further up-regulation or expression of genes responsible for the mineralization of the extracellular matrix. The findings here agreed with those reported by Lian and Stein (1992) and Maria (2004). After 15 days, a dramatic increase in calcium deposition was observed on all types of scaffolds that were cultured under normal flask conditions, clearly suggesting that scaffold 244 was responsible for the enhanced mineralization of marrow stromal cells more than other scaffolds. Possibly the dextrin and cockle shell (CaCO₃) concentrations were responsible for the observed, enhanced mineralization including the stimulation of the seeded cells on scaffolds. Additionally, the mitigation of potential nutrient transport limitations experienced by the cells cultured under these conditions enhanced the mineralization. The results clearly suggest that the new product composition is responsible for the enhanced mineralization of osteoblast cells. The higher calcium deposition reported for the scaffolds of some samples may be explained by the higher number of cells and cell density registered in these scaffolds. These observations were in agreement with the results of investigations carried out by Maria (2004). Therefore, calcium content of the scaffolds is indicative of the late stage differentiation of osteoblasts and a continual increase in calcium content over the culture period is expected. All constructs that were seeded with osteoblast cells showed a consistent increase in calcium content, with the highest value occurring at day-25 as seen in this study. Such results were in good agreement with the observations made by Datta et al. (2005) and Sikavitsas et al. (2005). It is well known to many researchers that the expression of calcium, a marker for mature osteoblasts, is strongly correlated with bone mineralization in osteoblast cultures. In the absence of mineralization, high levels of calcium cannot be expressed, and levels of ALP cannot decline. Such findings suggest that mineralization itself is closely associated with calcium expression, which may support our results in which the increased level of calcium (Ca²⁺) occur during matrix vesicles mineralization formation. Such findings are in accord with that reported by Stein and Lian (1993) and Maeno et al. (2005).

From a cellular viewpoint, cell attachment and spreading are critical phenomena in formation of successful tissue-graft material interactions. In conclusion, this study has shown that there is no significant difference (p> 0.05) between groups, and this was an indication that all scaffold compositions have the same potential and even quality and can be used in vivo.

In the ESEM analysis, all the figures showed that all the osteoblasts on the cultured scaffold were covered by a dense matrix coating on the bottom and the top surfaces together. The cells were able to migrate throughout the scaffolds and filled the entire construct. The top surface of the scaffolds exhibited a thin layer of extracellular matrix, after 3 to 7 days in culture. ESEM examination of the surface of the seeded scaffolds revealed that cells had attached and begun to spread. However, the cells did not adhere closely to the irregular surface of the substrate but instead made numerous contacts via cytoplasmic extensions as seen in Figures 7. These results agreed with that of Sautier et al. (1990), who reported that the topographic surface of a substrate can influence the manner in which the cells attach to it. The ESEM images also confirm the adaptation of the cells to the 3D environment in the scaffolds; bridging the pores and attaching to the pore walls. Figures 8 showed a significant amount of calcium deposition in the bone matrix. Similar observations were also reported by Yoshikawa et al. (1997) and Yoshikawa et al. (2000). In addition, the attached cells exhibited numerous processes and surfaces studded with microvilli and ruffles. It is possible that fixation and dehydration caused cellular collapse and that the lack of close contact was an
artifact. At the interface between the bone matrix and scaffold is an interfacial layer of collagenous unmineralized matrix, several micrometers thick. This layer is reportedly formed from secretion of extruded osteoblast processes and was seen in figures 9. These results agreed with those obtained by Yoshikawa et al. (1998). However, Sautier et al. (1990) reported that more protein synthesis occurred when cultured osteoblasts did not adhere closely to the substrate, but adopted stand-off morphology with considerable surface activity. Thus, the results confirmed the conclusion that the cultured scaffolds enhanced cell distribution in vitro.

Fig. 6. Calcium depositions of osteoblast cells at 5, 7, 14, 21 and 25 days post seeding on different scaffolds. Each bar denotes 1 standard deviation. * Significant difference (p<0.05) (one-sample t-test) within groups

Fig. 7. ESEM microphotographs of rabbit osteoblasts cultured on different scaffolds for 3 days (arrowhead) and 7 days (arrow) show the structure of the osteoblast cells on scaffold 262 (bars = 20µm)
Fig. 8. ESEM microphotographs of scaffold section at 19 days post-seeding. Subculture composite in vitro shows the structure of the cells and their processes, and also the activity and creation of extracellular matrix (arrow) (bar = 20μm)

Fig. 9. ESEM microphotograph of rabbit osteoblasts cells on the cultured scaffold at 21 days post-seeding shows that some cells are well developed flat in shape and others are spindle or rounded during this period (bar = 20μm)

The EDX analysis showed that there are many nodules consisting of calcium carbonate. These nodules are calcium-rich minerals, as identified by energy-dispersive X-ray analysis. The formation of calcium carbonate, or mineral deposition, is a primary function of osteoblast cells. The energy dispersive analysis in Figure 10, were taken from the cell surfaces as well as the scaffold matrices (marked with a blue rectangle) and shown on the accompanying SEM images. Energy dispersive analysis of an osteoblast on these scaffolds showed signs of calcium after 19 days culture as well as the extracellular matrix, and their amounts increased from day 14 to day 25. These results suggest that both the individual cells and cell clusters on these new scaffolds contributed to the production of calcium. These results conform with Lu et al. (2003) and Li et al. (2005).
Fig. 10. SEM microphotograph (A) shows the osteoblasts grown on bioceramic scaffolds at 19 days of dynamic proliferation, (B) spectrum 1 depicts the extra cellular matrix and spectrum 2 the calcium carbonate as determined by EDX analysis.
Histological examination showed that the scaffolds were covered and filled with new bone or osteoid tissue. Histological examination confirmed that the bone formation commenced after seeding of the scaffolds with the osteoblast cells. Thus, the osteoblast cells secreted both the collagen and the ground substance that constitutes the initial unmineralized bone or osteoid. The osteoblast is also responsible for the calcification of the matrix. The calcification process appeared to be initiated by the osteoblast through the secretion into the matrix of small, membrane-limited matrix vesicles. The vesicles are rich in alkaline phosphatase and are actively secreted only during the period in which the cell is producing the bone matrix. These vesicles are typically located at some distance from the cells where mineralization is to occur. These observations were in good accord with what was observed by Ross and Pawlina (2006). As the process continued, the newly organized tissue, at the presumptive bone site became more visualized, and the aggregated mesenchymal cells became larger and rounded as shown in Figures 11. Because of the collagen content, the bone matrix appeared denser than the surrounding mesenchyme in which the intercellular spaces revealed only delicate connective tissue fibers. The maturation and organization of the bone like extracellular matrix demonstrates the biological significance of the onset of mineralization as a second transition point in the osteoblast developmental sequence. This is further supported by studies that directly demonstrate a relationship between mineralization and the sequential expression of genes during the progressive development of the osteoblast phenotype (Chantal et al., 2000). Furthermore, it is known that all cellular events depend on interactions between the cells and the extracellular matrix (ECMs) and that ECM protein can modify the surface chemistry of tissue-engineered substrates to enhance cell adhesion and promote growth (Jäger et al., 2005).

Fig. 11. Microphotograph of the scaffold stained with counterstained van Gison at 60 days post seeded show the osteoblasts (arrowheads) and the osteoid tissue presented in the most area (arrow) with (x 400)

4. In vivo evaluation of the osteoblast seeded cockle shell-based biocomposite scaffolds

Rabbit was the animal model used in this experiment because it correlates well with the clinical situations, and the model is well documented and reproducible. We used the segmental bone defect model of rabbit radius to evaluate the bone healing capacity for this
new product. The radius is easily accessible; no fixation is needed because of the ulna support, and the short duration of fracture healing in rabbit model. Only male rabbits were chosen to standardize the sexes and to avoid the presence of hormonal fluctuation in female rabbits, which could give some influence on bone healing. The animal model, it is recommended to use adult rabbits to prevent epiphyseal slipping. For this we used 4-6 month-old rabbits. Such observations also reported by Herold, (1971) who was the first to described this model. The rabbit also is a well-established animal model in the field of BMP research (Zegzula et al., 1997; Texeira and Urist, 1998; Yuehuei and Friedman, 1999). The critical-size bone defects (CSD) normally do not heal when left untreated, thus we used this size of defect to proof that the new developed scaffolds can be used to treat large bone defect. It is well accepted that the length of the CSD in long bone is twice the bone diameter, and bone defects of 15 millimeters were used in this study.

Fig. 12. Radiographs of the radial bone defect in group B at 4 weeks post-implantation show the extensive bone formation is seen over the defect implanted with a freeze dried scaffold which filled up the defect space (yellow circles). Radiograph of the radial bone defect in group B at 8 weeks post-implantation show the radio density of the implant is increased, and the borders appear smooth indicating bone remodeling

Fig. 13. Photographs of the radial bone implanted with seeded scaffold in group A at 8 weeks post-implantation show the new bone formation completely filled the defect area and restored the continuity of the radial bone (arrows). A, lateral view, B, medial view
The assessment of the rabbit radial bone was done at the end of 8th week. The subsequent radiographs at 4 and 8 weeks post-implantation showed the smooth unambiguous union evidence (Figure 12). Thus we decided that the 8th week group would be timely and adequate in giving the information of this new scaffold which produced as a bone substitute for repairing bone process. The duration of complete radial bone union and healing in large defect of 1.5 cm was evident at 8th week post-implantation (Figure 13).

Radiographic findings of the new bone formation of the radial bone implant presented at the margin and centre of the defect implanted with seeded scaffolds was diffuse at the centre and margin region of the implanted scaffold indicating the osteogenesis. The newly formed bone image in the defect implanted with seeded scaffold was visible completely bridging the radial bone defect, and the bone formation was faster than the previous studies for the tissue engineering of bone repair (Li and Li, 2005). The results of this study indicate that the bioactivity, stability and osteoconductivity of the scaffolds are present in repairing the radial bone defect.

The ALP and Ca\(^{2+}\) was evaluated in this study from the blood sample taken during the period of experiment. It seems that ALP concentration for both scaffolds of group A and B give indication that the secretion of ALP comes from the active osteoblast cells. ALP is an enzyme membrane of osteoblasts and its activity increases with time as the osteoblast differentiation and maturation proceed. Previous study has showed that when osteoblast cells were implanted, the ALP activity appeared after 2 weeks and Ca\(^{2+}\) was detected after 3 weeks (Kessel, 1989). Elevated serum ALP may be due to the rapid growth of bones, since it is produced by bone forming cells called osteoblasts. The level of ALP of group A during the 4-8 weeks post-implantation was maintained high as compared to the level of ALP in control. The high Ca\(^{2+}\) concentration stimulates the osteoblasts to secrete ALP, which increases the local concentration of PO\(_4\)\(^{3-}\) ions. The high PO\(_4\)\(^{3-}\) concentration stimulates further increases in Ca\(^{2+}\) concentration where mineralization initiated. At this stage of high extracellular Ca\(^{2+}\) and PO\(_4\)\(^{3-}\) concentration, the osteoblasts release small matrix vesicles contain ALP and pyrophosphatase that cleave PO\(_4\)\(^{3-}\) ions from other molecules of the matrix (Kessel, 1989; Ross and Pawlina, 2006). The ALP analysis also demonstrated a high osteogenic capacity from 1 week post-implantation. The results obtained at weeks 4 and 8 post-implantation indicated that heated and freeze dryer scaffolds was able to promote osteoblastic activity by seeding the osteoblast cells into the porous scaffolds, so the achievement of early bone formation should enable the rapid repair of bone defect, thereby allowing for early recovery and return to daily activities (Ross and Pawlina, 2006). This experiment shows that there was no significant difference (P >0.05) between the seeded scaffolds and non seeded scaffold (control) in group B. However, there was a significant difference (p> 0.05) between the seeded scaffolds and non seeded scaffold (control) in group A. This indicated that the scaffold of group A is better than those in group B, since the concentration of the ALP was generally higher in group A.

The Ca\(^{2+}\) concentration as showed in Figures 14 can be mobilized to enter an adjacent capillary or it can be removed from the blood and deposited in the new bone matrix as needed. Ca\(^{2+}\) accumulation by matrix vesicles (MV) was produced by osteoblasts that increase in correlation with the level of bone regeneration. The matrix vesicles that accumulate Ca\(^{2+}\) and cleave PO\(_4\)\(^{3-}\) ions cause the local isoelectric point to increase, which result in crystallization of CaPO\(_4\) in the surrounding matrix vesicles. Thus, the CaPO\(_4\)
crystals initiate matrix mineralization by formation and deposition of $[Ca_{10}(PO_4)_6(OH)_2]$ (hydroxyapatite) crystals in the matrix surrounding the osteoblasts that was showing in period of bone formation during the level of Ca^{2+} was elevated (Kessel, 1989; Ross and Pawlina, 2006).

![Graph 1](image1.png)

Fig. 14. The graphs show the value of total alkaline phosphatase (ALP) in both groups A and B at different time intervals post-implantation.
Fig. 15. The grafts show the value of total calcium in both group A and B at different time intervals post-implantation.

Histological sections were assessed qualitatively by evaluating the bone formation at the defect area implanted with composite scaffolds. The histological analysis is widely used for examination of bone formation qualitatively. In this study, histological examination revealed complete new bone formation at the defect area replacing the seeded implant scaffolds in both groups A and B. However, in the control animals, it was observed that the bone formation was not complete and left empty defect space at the middle of the defect area, and there was no osteogenesis in the centre of implant. In the animals implanted with
seeded scaffolds, the new bone formation present in the centre of implant. The seeded scaffold were completely resorbed by 8 weeks post-implantation and there were complete new bone formation replacing the implant, and mineralization of new bone and remodeling process was observed at this stage as demonstrated by the presence of osteoclast cells. From the observation, we thus infer that the rapid new bone formation in animals implanted with seeded scaffolds was due to the present of marrow-derived osteoblasts in the scaffolds. These observations showed that osteoconduction, osteoinduction and osteogenesis occur simultaneously in the animals implanted with seeded scaffolds, while in animals implanted with non seeded scaffolds, only osteoconduction was present, thus the new bone formation was slow. These results agree with Li and Li (2005). Previous studies on the new bone formation on scaffolds post-implantation using different types of scaffolds have demonstrated different time of new bone formation. The study performed by Martin et al. (1993) who placed blocks of HA in the cortical defects of the humerus and radius in dog revealed that interposition of bone in pores is from 52% at 16 weeks to 74% at 1 year (amount of bone relative to the pore space) post-implantation. The spongy bone regrowth was 38% after 4 weeks, and increased another 17% at 1 year, yet the pore spaces of HA rarely completely filled with bone during this period (Rosen et al. 1990). Vuola et al. (1995) who used the coral implant reported that after 6 weeks of implantation, the bone does not actually invade the pores of the sample of coral, but replaces the matrix. Yoshikawa (2000) founds that HA modified implants required a large amount of fresh cells from bone marrow and the method would be difficult to apply clinically. In addition, the bone forming capacity of these transplants have not been solved after discontinuation of immunosuppressive. The surface of chitosan modified PDLLA scaffolds study was conducted by Cai et al. (2007) after implantation for 12 weeks. A lot of new bone was formed within the scaffolds at this stage with a mild inflammatory reaction. A little new bone even connected them to form circles around the scaffolding, which had not yet completely adsorbed. The previous results demonstrated quite significantly different from the current results on the time taken for the defect to heal completely. The current results showed that at 8 weeks post-implantation, the defect area was completely bridged by the new bone. Thus, the new biocomposite scaffolds developed in this study seeded with osteoblast before implantation is better.

Fig. 16. Microphotographs of the decalcified specimen stained with H&E (A, x100) and Masson’s trichrome (B, x400) show the mature bone. Note the osteon with concentric lamellae
5. Conclusion

Our observations indicate that the tissue engineering bone implant constructed by autogenous bone marrow derived osteoblasts and our scaffolds has the capability of osteogenesis, osteoconduction, and osteoinduction with a better osteogenetic effect and quality than scaffolds implant alone. Due to the availability of bone marrow and this scaffold, along with the bone regeneration potential, the tissue engineering bone might be an ideal scaffold for bone defect repair. The osteoinductive scaffold which is needed for the treatment of large bone defects are to be resorbed in a suitable time frame in order to minimize the amount of fibrous tissue and not to interfere with the remodelling of the new bone. In general, for observations in this study, the tissue engineering bone resulted in a higher quality and quantity of new bone formation when compared with the implanting of different types of scaffolds in previous studies, specially the HA, CaPO₄ bioceramic, TGF-β, auto, allograft bone and scaffold alone at the same period within 8 weeks. These results cannot absolutely exclude the possibility that the scaffolds alone give the same result by 12 or 16 weeks. Without doubt, if the scaffolds alone give the same result by 12 or 16 weeks, the cost effectiveness of osteoblast seeding may not be worthwhile. This is an interesting question requiring further investigation due to its importance in the practical application of this tissue engineering bone graft.

This study has revealed a new approach to design and fabrication of scaffolds for tissue engineering by using new materials in combination with natural polymer and water. Scaffolds were characterized for their physical and chemical properties. The analysis and tests used in this study demonstrated that the porous 3D scaffolds created by a new blend of materials through the described procedures are achievable.

This study also provides the fundamental information for researchers and engineers working in advanced composite industry, to open a new approach to the development of bioengineered composites. Cross-disciplinary research efforts are definitely needed in bridging expertise from bio-, nano and advanced composite areas, to work closely along this new scientific and engineering direction.

The work described in this thesis is heavily focused on developing and using biomaterials as tissue engineering matrices. Tissue engineering has been described as "the principles and
methods of engineering, materials science and cell and molecular biology to the
development of viable substitutes that restore, maintain or improve the function of humans’
bone". Advances in new biocompatible materials, both osteoconductive and osteoinductive,
will also aid in the treatment of bone diseases, while new diagnostic methods will help
identify those at risk of disease before symptoms are obvious. A better understanding of
how bone perceives and responds to mechanical signals will certainly help accelerate the
healing of fractures, increasing the osseointegration of implants, and help to ensure that
diseases such as osteoporosis can be treated properly. These are undoubtedly exciting times
for everyone working in the bone field, and the interdisciplinary nature that has brought us
tremendous insight into bone's complexity on a structural and functional level hence serve
us well in the future.

6. Acknowledgement

The study was supported by e-Science research grant (project no. 06-01-04-SF202) provided
by Malaysia Government.

7. References

Porous Composite Scaffold Based on Gelatin and Hydroxyapatite for Bone Tissue

and criteria for success. In: Tissue Engineering in Musculoskeletal Clinical Practice,
Surgeons*, pp.3-16

dimensional poly (D, L-lactic acid) scaffolds with chitosan *in vivo*. *Journal of

using biodegradable scaffolds: Investigating initial cell-seeding density and

and Cartilage Tissue Engineering. Thesis

extracellular matrix synthesized *in vitro* on the osteoblastic differentiation of

Part 4

Advanced Strategies
Bioactive Scaffolds for the Controlled Formation of Complex Skeletal Tissues

Sandra Hofmann¹ and Marcos Garcia-Fuentes²

¹Institute for Biomechanics, ETH Zurich, Zurich,
²NANOBIOFAR Group, Dep. Pharmacy and Pharmaceutical Technology, Campus Vida,
University of Santiago de Compostela, Santiago de Compostela
¹Switzerland
²Spain

1. Introduction

Most skeletal tissues have the innate capacity to regenerate, at least to a certain extent, without therapeutic intervention. Bone for example has the capacity to repair fractures up to a critical size with the help of local or recruited cells of the patient’s body, and the defects heal by forming new bone that is indistinguishable from uninjured tissue (Deschaseaux et al., 2009; Place et al., 2009). However, traumatic fractures of the lower extremities are one group of orthopedic injuries that often require prolonged rehabilitation, or multiple procedures to achieve maximal functional recovery, and comprise the bulk of nonunion or delayed-union fractures (Deschaseaux et al., 2009). In contrast, articular cartilage, ligaments and tendons are known to have a limited capacity for self-repair and methods to augment their natural healing response are still highly investigated.

Biomaterials used to restore the structure and function of lost tissues and organs have evolved greatly due to the large knowledge accumulated on material-protein and material-cell interactions. Current commercially available biomaterials are engineered to be non-toxic, non-immunogenic, and hemocompatible. In contrast to elements of the extracellular matrix of living systems, however, these scaffolds are very poor in information, which makes them suboptimal for many tissue engineering applications. These passive biomaterials are unlikely to guide cell migration and differentiation or controlled matrix deposition, a problem that becomes even more evident in complex tissues with more than one cell type. Furthermore, they also cannot induce tissue neoformation while preventing other undesirable tissue repair processes such as scarring, and they are unable -with the notable exception of some materials in bone regeneration- to promote functional tissue integration in the host, including vascular and/or nervous connectivity. Finally, these passive scaffolds largely lack the capacity to induce cell differentiation, which becomes a major limitation for their use together with current stem cell-based therapies (Huebsch & Mooney, 2009). A promising strategy to overcome these limitations is to design bioactive scaffolds capable of recruiting tissue-forming cells from the body in such a way that they promote cell adhesion and tissue formation within their matrix. Moreover, materials that can recruit endogenous cells of the patient into scaffolds, avoid the expense and difficulties
associated with culture, storage and distribution of cells, not to mention other immunological considerations (Discher et al., 2009; Place, ES et al., 2009).

Bioactivity is defined as having the capacity to interact with a living tissue or system. In terms of scaffold design, we define a bioactive scaffold as one in which biological functionality has been integrated to provide an information-rich support material for tissue engineering. Bioactive scaffolds are designed to control cell- and tissue responses, and to provide a more efficient integration with the host. In this manuscript we will cover the most important scaffolds presenting a biomimetic composition (Section 2), the main strategies to introduce biomimetic features in scaffolds (Section 3), their expected applications in skeletal tissue engineering and the main challenges remaining for the successful application of this concept (Section 4). We will highlight methods of how scaffold materials can be modified to be bioactive, how a scaffold can promote the body’s innate capabilities to heal and recruit cells to the site of injury. Bioactive scaffolds have already found their way into clinics and hold great promise to serve as a manageable alternative to tissue engineered implants that face a vast array of regulatory and logistical issues. In the end, products on the market need to show convincing clinical performance as well as cost-effectiveness. We will therefore not cover the traditional tissue engineering approach to seed and culture scaffolds ex vivo with cells before implantation. However, many of the methods presented here have been discovered from in vitro cell cultures and might as well be of high importance in these strategies.

2. Scaffolds with a biomimetic composition

Three dimensional biopolymer networks are major players in physiological wound healing. It is assumed that wound healing progresses through three stages: (i) blood clotting and inflammation; (ii) granulation tissue; (iii) tissue remodeling. Each of these stages can be associated to the prevalence of a particular biopolymer network, i.e. fibrin (stage i), unstructured collagen/glycosaminoglycan (GAG, for an acronym list refer to Section 6) extracellular matrix (stage ii), structured collagen/GAG extracellular matrix (stage iii) (Braiman-Wiksman et al., 2007). The delicate choreography of deposition and remodeling of these biopolymer networks is coupled to the activation of relevant signaling cascades, directing immune cell invasion, inflammatory processes, progenitor cell attraction, differentiation, extracellular matrix (ECM) deposition, ECM remodeling and revascularization of the newly formed tissue graft (Gillitzer & Goebeler, 2001). These critical processes in wound healing underline the importance of fibrin, collagens and GAGs in tissue formation and fundament their recognition as bioactive polymers for tissue engineering. Besides, this biomimetic approach has also suggested the potential of reprocessed tissues for tissue/organ engineering. Reprocessed tissues are complex, structured scaffolds prepared by performing different extraction treatments (i.e. demineralization, decellularization) to biological tissues.

2.1 Fibrin

Fibrin is a biopolymer derived from the crosslinking of fibrinogen, the major protein involved in blood coagulation. As a medical product, fibrin gel is a blood derivative, typically presented as a two syringe-system with a fibrinogen solution and a thrombin solution having a common port. Once casted, fibrinogen is cleaved by thrombin, resulting in
Bioactive Scaffolds for the Controlled Formation of Complex Skeletal Tissues

395

the formation of a gel in a few seconds. In Europe, fibrin glue has been available as tissue adhesive, sealant and hemostat from the 1980’s. Its approval by the FDA was delayed until 1998 due to security standards regarding blood derivative processing. Fibrin is now regularly used in surgery around the world for a broad number of indications (Spotnitz, 2010).

Fostered by its success in surgery, fibrin has gained increased attention in tissue engineering strategies. Fibrin has the great advantage that it can be delivered by minimally-invasive methods to the tissue defect, a property that is only shared with a few materials capable of gelling in situ (Kretlow et al., 2007). Due to this controlled gelling capacity, fibrin glue can be casted in defined shapes and be applied to fill wound beds. For cell delivery, fibrin glue excels in many ways, as cells can be injected with fibrinogen solution and are then retained at the wound site as the fibrin gels. As fibrin has been designed by nature as the emergency “physiological scaffold” used in wound healing, fibrin gels are well structured to accommodate cells (T.A.E. Ahmed et al., 2008). As a cell delivery matrix, fibrin glue has been used with mesenchymal stem cells (MSCs) for bone (Dozza et al., 2011; Liao et al., 2011), cartilage (T.A. Ahmed et al., 2011; J.S. Park et al., 2011), ligament and tendon regeneration (Lim et al., 2004; Soon et al., 2007). It has also been used with chondrocytes in cartilage regeneration (Eyrich et al., 2007; S.J. Lee et al., 2011; Peretti et al., 2006; Singh et al., 2011), with osteoblasts for bone regeneration (S.J Kim et al., 2007), and fibroblasts in tendon regeneration (Chun et al., 2003).

Fibrin glue can also be used as a drug delivery device for growth factors (GFs), either in combination with cell transplantation or not. Several studies have shown that fibrin glue can provide sustained release of GFs during a few days to one week (Spicer & Mikos, 2010). Longer GF retention times can be achieved by modifications in the GF (Schmoekel et al., 2004), by integrating high GF-affinity moieties in the fibrin chains (Merritt et al., 2010), or by covalent linking of the GFs (Drinnan et al., 2010; Schmoekel et al., 2005). Examples of GFs that have been integrated in fibrin gels in skeletal tissue engineering applications include BMP-2 (Kang et al., 2011; Schmoekel et al., 2004; Schmoekel et al., 2005), TGF-β1 and TGF-β3 (Drinnan et al., 2010; J.S. Park et al., 2011; W. Wang et al., 2010b). A similar concept to GF-loaded fibrin is platelet-rich fibrin, a new blood-derivative formed by platelet concentration. Platelet-rich fibrin also comprises fibrinogen for its polymerization in situ, although handling is different as compared to fibrin glue (Dohan et al., 2006). Due to this different processing, platelet-rich fibrin contains a concentrate of GFs that are present in platelets (i.e. PDGF, TGF, IGF, VEGF, EGF), transforming this product in a truly blood-clot biomimetic (Eppley et al., 2004). Platelet-rich fibrin, however, presents some disadvantages compared to fibrin glue encapsulating GFs. These are mainly related to potential variability in GF-content between batches and undefined GF doses.

Besides those indicated for GF delivery, fibrin glue has some important shortcomings. Firstly, fibrin is known to shrink as gelation occurs, and overall, fibrin lacks adequate mechanical properties (Sierra, 1993). Those limitations are particularly critical to skeletal tissue engineering, as many tissues to be regenerated are load bearing. Moreover, fibrin gels are known to degrade in a few days in vivo, due to the activation of plasminogen by the cells, which leads to formation of the serine protease plasmin and to subsequent fibrinolysis (Ye et al., 2000). Again, this short biodegradation time is probably inadequate for most applications in skeletal tissue engineering, as regeneration of these tissues usually takes several weeks or months. To address these limitations, fibrin glue scaffolds can be optimized
by using a solid porous scaffold for reinforcement (Schagemann et al., 2010; Z.H. Wang et al., 2010a; W. Wang et al., 2010b), or by the use of enzymatic inhibitors (Fussenegger et al., 2003). Eyrich et al. reported some optimized conditions that lead to fibrin gels that were stable for up to three weeks in vitro (Eyrich et al., 2007).

Despite being a material with a long history of application, fibrin has been studied recently in some advanced tissue engineering strategies for bone regeneration. Dozza et al. showed that MSCs seeded in fibrin scaffolds resulted in better bone formation around an un cemented hip prosthesis and better bone-prosthesis contact compared to the control (Dozza et al., 2011). Liao et al. showed that MSCs seeded in either platelet-rich fibrin or a Medpor® sheet filled with platelet-rich fibrin resulted in approximately 4-fold higher bone formation as compared to empty defects in a mandibular reconstruction model (Liao et al., 2011). Leong et al. confirmed the osteogenic differentiation of MSCs in fibrin glue filled polycaprolactone/tricalcium phosphate scaffolds (Leong et al., 2008).

Fibrin-based devices have also been recently studied for cartilage and ligament/tendon regeneration. MSCs seeded in fibrin glue containing TGF-β3 showed the capacity to regenerate articular cartilage (J.S. Park et al., 2011). Eyrich et al. demonstrated the capacity to form cartilage with chondrocyte-seeded stable fibrin gels (Eyrich et al., 2007). Wegener et al. used polyester scaffolds filled with a fibrin gel (with or without chondrocytes) to repair cartilage defects in the femoral condyle in sheep (Wegener et al., 2010). This study confirmed cartilage formation and improved O’Driscoll scores in defects filled with these scaffolds. Lee et al. formed a cartilage layer by seeding chondrocytes in fibrin gels on top of auricular implants as a strategy to minimize morbidity associated with implant dislodgement (S.J. Lee et al., 2011). Wang et al. used polyester/fibrin gel constructs loaded with MSCs and TGF-β1 to promote restoration of full-thickness cartilage defects (W. Wang et al., 2010b). Also recently, Scotti et al. used fibrin gels to promote cell adhesion to devitalized spongiosa cylinders used for engineering osteochondral grafts (Scotti et al., 2010). In two studies by the laboratory of Lee, MSCs embedded in fibrin glue were able to promote better osseointegration of tendon grafts (Lim et al., 2004; Soon et al., 2007).

A clinical study on mandibular degree II furcation defects has shown that patients treated with platelet-rich fibrin glue and an open flap debridement presented statistical improvements in all clinical parameters as compared to patients treated with just open flap debridement (Pradeep & Sharma, 2011). In another clinical study, MSCs in platelet-rich fibrin glue were implanted in patients with condyle defects for cartilage regeneration (Haleem et al., 2010). The study showed improvement of patient’s symptoms in all subjects over the follow-up period of 12 months, achieving nearly normal arthroscopic scores after the follow-up and partial to total cartilage surface regeneration.

2.2 Collagen

Collagen is a family of proteins that are the main components of connective tissue, and the most abundant proteins in mammals (>90% of the ECM) (Van der Rest & Garrone, 1991). Collagen type-I is a major component of scar tissue, while this and other types of collagens are present in physiological tissue (and regenerated tissue if correctly remodeled) (Fratzl 2008). Specifically in skeletal tissues, collagen type-I is preeminent in bone, tendons and muscle. Collagens in cartilage change with specific tissue types: collagen type-II is preeminent in hyaline cartilage, collagens type-I and –II are present in fibrocartilage and collagen type-X is a marker of hyperthrophic cartilage. Collagen type-I is a long, stiff, triple-
stranded helical structure comprising two identical chains (i.e. one \(\alpha_1(I) \)-chain and one \(\alpha_2(I) \)-chain). This \(\alpha_2(I) \)-chain contains the sequence repeat \((G-X-Y)n\), \(X \) being frequently proline and \(Y \) hydroxyproline, that allow the formation of a triple helix (Ricard-Blum & Ruggiero, 2005). In physiological tissues, collagens show very defined structures. For instance, collagen type-I forms parallel, longitudinal fibers in tendons and ligaments and long bones. In lamellar bone, collagen type-I fibrils run in parallel to other fibrils in the same layer, but are aligned in the opposite direction in alternating layers (Fratzl 2008). In cartilage, collagen type-II is crosslinked to proteoglycans by the action of collagen type-IX that acts as a biological “spacer” (Fratzl 2008; Lodish, H et al., 2002).

As materials for tissue scaffolds, collagens have been thoroughly investigated due to their biomimetic nature, their biocompatibility and abundance. Indeed, collagen type-I has shown to be degradable, and highly biocompatible, particularly after proteolytic removal of telopeptides (Glowacki & S. Mizuno, 2008). Currently, collagen is FDA approved for implantation. Collagen scaffolds can be prepared in two forms: as hydrogels or as fibers in a mesh like structure (also named as “collagen sponges” or “collagen foams”). Collagen fibers can be reinforced by crosslinking, a modification that can be performed with either physical or chemical methods (Glowacki & S. Mizuno, 2008). Some chemical crosslinkers such as glutaraldehyde have been related to cytotoxicity (Middelkoop et al., 1995), although others have shown that this limitation can be overcome by protocol optimization (Nimni et al., 1987). Today, other more biocompatible crosslinkers can be selected (Kubow et al., 2009; Mekhail et al., 2010). Collagen fibers manufactured by optimized protocols present an adequate porous microstructure and promote cell adhesion (Glowacki & S. Mizuno, 2008). In skeletal tissue engineering, collagen scaffolds have been used for seeding osteoblasts (Laflamme & Rouabhia, 2008), periosteal cells (Ryu et al., 2010), MSCs (Brady et al., 2010; Dozza et al., 2011; Jäger et al., 2008), chondrocytes (Oliveira et al., 2010; Zhou et al., 2011) and fibroblasts (George et al., 2008; Mekhail et al., 2010). Collagen type-I has shown the capacity to specifically upregulate osteoblastic function and bone formation (Lynch et al., 1995), and this property has been linked to the interaction of this collagen with integrin \(\alpha_2\beta_1 \) (M. Mizuno et al., 2000). On the other hand, collagen type-II scaffolds have shown favorable interactions for cartilage tissue engineering and cartilage regeneration, particularly in combination with GAGs (Chang et al., 2007; Wu et al., 2010). These results highlight, once again, the importance of providing the cells with scaffold compositions that mimic their natural environment.

To enhance their regenerative properties even further, collagen scaffolds can be loaded with GFs such as BMPs (Laflamme & Rouabhia, 2008), TGF (Pabbruwe et al., 2010) and FGF (Pang et al., 2010). Collagen-based sponge constructs be impregnated in BMP-2 are already available as a FDA-approved commercial product for spinal reconstruction (Infuse™, Medtronic, Inc.). Nevertheless, collagen has rather limited controlled release capacity, with most occurring in the first days (Maeda et al., 1999). Release properties can be improved to a limited extent by crosslinking (Fujikawa et al., 1998) or drastically, by embedding in the scaffold a suitable drug delivery device (Fujikawa et al., 1998; J.E. Lee et al., 2004).

Apart from its limited capacity to control drug release, the main limitations of collagen scaffolds are their poor mechanical properties. Indeed, collagen scaffolds show no rigidity and shrink due to the cohesive forces that appear as ECM is deposited. As with fibrin, this shrinking is observed already in vitro, and clearly show the intrinsic limitations of this material to reconstruct tissue constructs with defined shapes: ultimately, one of the main objectives of scaffold implantation. Besides, this lack of mechanical competence might
compromise the integrity of the scaffold upon implantation resulting in implant failure, non-union or even ectopic tissue formation. Again, it needs to be considered that for most skeletal tissue engineering applications, scaffolds will be exposed to considerable mechanical stress. The mechanical properties of collagen scaffolds can be improved by the integration of a reinforcing substructure (Zhou et al., 2011) or using composites of collagen with mechanically competent materials (Lee et al., 2004). Apart from this limitation, collagen scaffolds might lead to some minor immunological problems upon implantation if the telopeptides are not correctly removed from the materials by proteolysis (S. Mizuno & Glowacki, 1996).

Due to their many intrinsic advantages, collagen scaffolds have been applied to the regeneration of all skeletal tissues. Zhang et al. studied chitosan/collagen scaffolds bioactivated with an adenovirus carrying a BMP-7 transgene and seeded with periodontal ligament cells in dental implant defects (Y. Zhang et al., 2007). Histomorphological and qRT-PCR analysis were consistent with more bone formation and higher expression of bone-matrix markers (alkaline phosphatase, osteopontin, bone sialoprotein). Xu et al. studied collagen type-I scaffolds integrating bone sialoprotein for their capacity to induce osteoblast differentiation, and found that this treatment resulted in early mineral deposition by proliferating repair-cells in calvarial defects. Pabburke et al. implanted collagen-based constructs seeded with MSCs in sheep meniscal disks, and confirmed by histomorphometric analysis that they improve integration compared to the scaffolds alone and the control (Pabbruwe et al., 2009; Pabbruwe et al., 2010). Zhou et al. showed that substructure-reinforced collagen matrixes seeded with chondrocytes supported neocartilage formation (Zhou et al., 2011). Chen et al. tested the potential of genipin-crosslinked collagen type-II scaffolds seeded with MSCs for cartilage repair in an osteochondral defect and observed that after 2 months, there were clear signs of cartilage formation in the defect (W.C. Chen et al., 2011). After 24 weeks, cartilage in the defect presented the same structure as native cartilage. A recent study has confirmed the efficacy of knitted silk-collagen sponge scaffolds as support for embryonic stem cell-derived MSCs in tendon regeneration (J.L. Chen et al., 2010).

Being one of the first and most widely used materials studied for tissue engineering, collagen has already been investigated in several clinical studies (Rodkey et al., 1999; Stone et al., 1997) that have ultimately resulted in collagen regulatory approval. Intense clinical research continues, as new indications for collagen-based scaffold technologies are sought and long-term clinical outcomes are reevaluated. In a recent study, Crawford et al. studied the safety and healing potential of commercial cartilage matrix seeded with autologous chondrocytes (NeoCart) in the human knee (Crawford et al., 2009). The study revealed significantly reduced pain in the treatment group, with neocartilage formation that was well integrated. Welsch et al. compared cartilage repair in the femoral condyle after autologous chondrocyte transplantation in a hyaluronan-based scaffold or a collagen-based scaffold (Welsch et al., 2010). Results based on morphological scores and T2-mapping showed that most parameters were similar for both scaffolds, however, collagen showed significantly better constitution of the surface and higher T2-relaxation times.

2.3 Glycosaminoglycans

Glycosaminoglycans (GAGs) are linear polysaccharides consisting of repeating hexuronic acid bonded to a hexosamine (Iozzo, 2000). GAGs are usually sulfated and linked to a protein domain (a structure that is named proteoglycans). Hyaluronan is exceptional in this regard as it is the only kind of GAG that is neither modified by sulfonation nor attached
Bioactive Scaffolds for the Controlled Formation of Complex Skeletal Tissues

covalently to proteins. Nevertheless, hyaluronan does attach by non-covalent interactions to other molecules of the ECM and to cells. Other important GAGs are dermatan sulfate, chondroitin sulfate, heparin, heparan sulfate and keratan sulfate. GAGs have important physiological functions as “space fillers”, in shock absorption, in preventing coagulation, and in GF binding. Studies have also shown the importance of GAGs in embryogenesis and tissue regeneration (Fedarko et al., 1992; Toole, 2001). However, the complete functionality of GAGs is still a topic requiring further investigation.

Unmodified GAGs tend to form polymer solutions or gels that dissolve slowly due to the high molecular weight of the components. This dissolution of the matrices together with their poor mechanical properties are unsuitable for tissue engineering. Therefore, GAGs are most often not used by themselves to form scaffolds, but rather as composites (Garcia-Fuentes et al., 2008; Min et al., 2010; Moss et al., 2010; S.J. Park et al., 2009; Schagemann et al., 2010). This role is even more prominent for heparin and heparan sulfate, which are typically added in very small proportions as GF-complexing agents in drug delivery formulations (Biondi et al., 2008; N.X. Wang & von Recum, 2011). Alternatively, GAGs can be chemically modified as a more insoluble compound (e.g. Hyaff®, Fidia Farmaceutici s.p.a) or as crosslinked networks (Crescenzi et al., 2003; Zheng Shu et al., 2004). In skeletal tissue engineering studies, GAG-containing scaffolds have been seeded with osteoblast-like cells (Wagner et al., 2007), chondrocytes (Nuernberger et al., 2011; Schagemann et al., 2010), MSCs (J.L. Chen et al., 2010; Min et al., 2010; Schwartz et al., 2011), and fibroblasts (Irie et al., 2011; Sawaguchi et al., 2010). Hyaluronan interacts specifically with cells through CD44, RHAMM and ICAM-1 (Tammi et al., 2002; Toole, 2004). These interactions trigger signaling cascades that could result in the observed capacity of hyaluronan to instruct tissue neo-formation and regeneration. For illustration, hyaluronan has shown pro-proliferative properties (Zou et al., 2004), capacity to enhance unspecific ECM deposition (Garcia-Fuentes et al., 2009), to induce cartilage (Allemann et al., 2001; Williams et al., 2003; Yamane et al., 2005) and ligament (Cristino et al., 2005) formation, capacity to maintain embryonic stem cells in undifferentiated state (Gerecht et al., 2007), and capacity to modulate inflammatory and catabolic markers (Grigolo et al., 2005; Homandberg et al., 2004). Hyaluronan biological properties, though, seem to be very dependent on its molecular weight, and the presence of hyaluronan oligosaccharides have been connected to chondrocyte-driven chondrolysis (Knudson et al., 2000).

GAG-based or GAG-modified scaffolds have also been applied with GFs for sustained delivery. Again, this mimics a physiological process, as sulfated GAGs are GF reservoirs in the ECM. For most GFs, GAG binding occurs through specific non-covalent interactions between a so-called heparin binding domain in the polypeptide and the sulfated GAG (Iozzo, 2000). Modification of drug delivery systems with sulfated GAGs for specific binding of GFs is a usual technological strategy, commonly practiced as a surface modification (i.e. “surface heparinization”) (Biondi et al., 2008; N.X. Wang & von Recum, 2011). An alternative but still rather unexplored strategy is the design of delivery systems based on crosslinked sulfated GAGs for GF-delivery applications. Drug delivery devices modified with sulfated GAGs have been applied to the delivery of TGF-β1 (Chou et al., 2006; Lee et al., 2004) and FGF-2 (Mi et al., 2006) among others. Heparin and other sulfated GAGs known to interact with GFs can enhance markedly the affinity of these molecules for the drug delivery system and change the release profile of the device, as reviewed before (N.X. Wang & von Recum, 2011). In general terms, when sulfated GAGs are integrated in the composition of a
hydrogel, they show high affinity for the GF and result in sustained release profiles (Benoit & Anseth, 2005b). In the work of Cai et al. (Cai et al., 2005), FGF-2 was released from several crosslinked GAG-based hydrogels in a sustained way for over a month. Moreover, it was found that hydrogels presenting immobilized heparin further enhanced the retention of FGF-2. Interestingly, the bioactivity of the released GF was confirmed both in the study of Benoit et al. (Benoit & Anseth, 2005b) and in that from Cai et al. (Cai et al., 2005).

GAG-based materials, particularly hyaluronan, have been extensively investigated for skeletal tissue regeneration. Patterson et al. prepared hyaluronan hydrogels with different degradation rates by photo-crosslinking to control the release of BMP-2 in a rat calvarial defect model (Patterson et al., 2010). They showed that tissue regeneration could be achieved with any of the BMP-2 loaded hydrogels tested. However, the fastest and the slowest degrading hydrogels resulted in more organized bone structures. Kang et al. investigated the possibility of coating porous polyester scaffolds with a fibrin/hyaluronan matrix loaded with BMP-2, and the effect of such constructs in MSCs (Kang et al., 2011). The results showed that MSCs were differentiated more efficiently and resulted in better bone formation when BMP-2 was sustainably released from the fibrin/hyaluronan constructs as compared to BMP-2 in solution. Chen et al. showed that polyester scaffolds coated with hyaluronan/methylated collagen were able to enhance bone formation by MSCs as compared to non-coated polyester systems (M. Chen, et al., 2010). In the study published by Irie et al., chitosan/hyaluronan fibers seeded with fibroblasts were tested for rabbit medial collateral ligament reconstruction (Irie et al., 2011). The in vivo test indicated that ligaments treated with cell-seeded scaffolds showed enhanced collagen type-I deposition and mechanical strength as compared to non cell-seeded ones.

Cartilage and osteochondral structures have been the main focus of attention for GAG-based scaffolds, as GAGs are particularly important components of cartilage ECM. Tan et al. showed the potential of new oxidized hyaluronan/N-succinyl chitosan systems that are able to gel in situ for the delivery of chondrocytes (Tan et al., 2009). Eggelet et al. tested a cell-free polyester/hyaluronan scaffold to cover microfractured full-thickness articular cartilage defects in sheep, and achieved significant improvements in histological structure, and in collagen type-II content as detected by immunohistochemistry (Erggelet et al., 2009). Im et al. designed a hyaluronan-atelocollagen/hydroxyapatite-tricalcium phosphate composite scaffold for testing in osteochondral defects in minipigs (Im et al., 2010). Clinical scoring, histological and mechanical results showed comparable results for this composite scaffold with or without seeded chondrocytes and for defects refilled with the removed osteochondral pieces. Moreover, all these groups showed significantly higher performance than the negative control (empty defects), but comparable in many aspects to native cartilage. In the studies of Moss et al. and Huang et al., GAG-based scaffolds were used for reconstitution of the nucleus pulposus of the intervertebral disc (Huang et al., 2011; Moss et al., 2010). The results of these studies sustained the possibility to maintain disc height and induce intervertebral disc regeneration upon implantation of these scaffolds. Interestingly, the study of Moss et al. compared hyaluronan scaffolds with a composite of hyaluronan and an elastin-based peptide (Moss et al., 2010). Although the composites presented better mechanical properties, this improvement did not translate in enhanced regeneration. Nehrer et al. and Welsch et al. have published clinical evaluations of hyaluronan scaffolds seeded with chondrocytes for cartilage regeneration (Nehrer et al., 2009; Welsch et al., 2010). The study by Nehrer supported the interest of Hyalograft C for cartilage regeneration in healthy young patients with isolated cartilage defects, but not for salvage procedures.
Bioactive Scaffolds for the Controlled Formation of Complex Skeletal Tissues

(Nehrer et al., 2009). Similarly positive results were obtained by Welsch et al. for condyle regeneration, although this study showed some slight advantages of collagen-based scaffolds compared to the hyaluronan-based ones.

2.4 Reprocessed tissue scaffolds

From the point of view of biomimetism, reprocessed tissue scaffolds (e.g. demineralized bone matrix and decellularized tissues) represent probably the most advanced scaffolds available. These natural scaffolds recapitulate not only the complex composition, but also the structure of the native tissues (Danti et al., 2007; Traphagen & Yelick, 2009). This cannot be achieved with the scaffolds prepared from extracted ECM compounds such as those presented before, because the processing steps used to extract the biopolymers completely erases the morphology, histological topology, the precise interactions between different components, the molecular alignment, and other subtle cues from the materials. While both demineralized bone matrix (DBM) and decellularized tissue can be considered similar concepts (“reprocessed tissue scaffolds”), their processing methods and characteristics differ and are discussed separately herein.

Demineralized bone matrix is prepared by acid extraction of allograft bone (Urist, 1965). It results in the elimination of the major part of the mineral phase and the immunogenic components of bone, but retains collagen that provides a structured osteoconductive scaffold and a soluble protein fraction comprising several GFs, BMPs among them (Dinopoulos & Giannoudis, 2006; Reddi, 1998). It is also usual to retain a very low fraction of mineral bone phase after the demineralization step (2% approx.). The exact composition of DBM -including the GF content- will depend heavily on the exact protocol followed for mineral extraction, and thus, DBM from different commercial sources might show considerable variability. Extensive studies have shown that DBM is osteoinductive and osteoconductive (Dahners & Jacobs, 1985; Martin Jr et al., 1999). Osteoinduction mechanism by DBM seems to be very dependent on the environment. DBM implanted in submuscular/subcutaneous tissue undergoes ossification through a process recapitulating several steps from the endochondral bone formation process. DBM implanted in calvarial defects direct MSC differentiation to osteoblasts, similarly to the process followed in intramembranous ossification (J. Wang & Glimcher, 1999a, 1999b; J. Wang et al., 2000). DBM by itself is presented in the form of a powder, but is usually mixed with other suitable materials (e.g. hyaluronan, poloxamer) to form a paste that can be easily casted at the bone defect site (Dinopoulos & Giannoudis, 2006; Juang Ming Yee et al., 2003). Mixing DBM with other materials, however, changes the product from a regulatory perspective. DBM can be supplemented with suitable cell types as a strategy to promote tissue regeneration. For instance, some articles report on seeding chondroblasts in DBM as a potential alternative in cartilage tissue engineering (Jin et al., 2006; Z.H. Wang et al., 2010a). A large number of studies have also investigated MSC-seeded DBM (e.g. see Gurevitch et al., 2003; Liu et al., 2010a). DBM can also be supplemented with additional GFs in an attempt to boost their regenerative capacity. DBM has been mainly loaded with BMPs (Lammens et al., 2009) –and particularly, with BMP-2- for bone tissue engineering (Lammens et al., 2009; H. Lin et al., 2008). DBM has also been loaded with other GFs such as TGF-β1 (Moxham et al., 2009). Overall, DBM presents very little capacity to bind additional GFs, and therefore is not an ideal choice as a sustained delivery system. Modification, for instance by heparin addition, can increase GF binding affinity. First DBMs were introduced
to the clinics during the 1990’s, and there are currently more than 20 commercial products available based on this technology. Therefore, there is currently large clinical evidence supporting their efficacy for several orthopedic conditions (Irinakis, 2011; Y.K. Kim et al., 2010; Topuz et al., 2009).

Decellularized tissue scaffolds are prepared by cell lysis, induced by physical and/or chemical treatments, followed by cell component removal treatments. Mostly, chemical methods are used for this last step (Gilbert et al., 2006). Similarly to DBM, decellularized tissues present the biomimetic topology, tissue-conductive capacity and regeneration-inductive properties arising from the presence of physiologically amounts of GFs in the ECM. However, these beneficial characteristics are heavily dependent on the processing protocol followed for decellularization (Gilbert et al., 2006; Ingram et al., 2007; Woods & Gratzer, 2005). Moreover, this protocol might also influence other critical parameters such as the decellularization efficacy and the complete removal of chemical agents from the natural scaffold. Although decellularized tissues and organs are being investigated in several tissue engineering applications, they have not been so popular for skeletal tissue engineering, as scientist have focused on these technologies for engineering high-complexity, localized organs such as the heart (Ott et al., 2008). That is except for DBM, which can be considered also a decellularized tissue scaffold. Some articles have supported the concept of decellularized cartilage as a chondroconductive matrix in cartilage tissue engineering (Elder et al., 2010; Gong et al., 2011; Hou et al., 2011; Secretan et al., 2010; Stabile et al., 2010). Indeed, in vitro tests have shown the possibility to form cartilage tissue in vitro by chondrocyte seeding on a decellularized tissue scaffold (Gong et al., 2011). This ability to support cartilage formation translates to advanced in vivo models such as a for larynx reconstruction in a rabbit model (Hou et al., 2011), or for meniscus reconstruction in sheep (Stabile et al., 2010). First proof-of-concept of the therapeutic interest of this concept in humans is available through the successful transplantation of an MSC-seeded decellularized airway in a 30-years old patient with bronchomalacia (Macchiarini et al., 2008).

Decellularized tissues have also been applied to ligament and tendon tissue engineering in vitro, with successful results (Abousleiman et al., 2009; Deeken et al., 2011; Ingram et al., 2007; MacLean & Gratzer, 2011; Woods & Gratzer, 2005). Further animal experiments and clinical studies will be necessary to validate the potential of this strategy. Similarly, other studies have indicated the possibility to use decellularized tissue scaffolds also for skeletal muscle repair and adipose-tissue engineering (L. Flynn et al., 2007; L.E. Flynn, 2010; Gillies et al., 2010; Merritt et al., 2010).

3. Strategies for scaffold bioactivation

As compared to nature’s derived biopolymers, synthetic materials for tissue engineering offer important advantages such as more reproducible manufacture, tailored mechanical and biodegradation properties, and diverse processing options. With a few exceptions (e.g. titanium) synthetic materials do not interact favorably with the body, rendering them incapable of actively promoting tissue regeneration. Despite this limitation, synthetic biomaterials can be engineered to promote their capacity to cross-talk with relevant cell populations. Indeed, bioactive scaffolds can also be prepared from synthetic materials by physical adsorption or chemical immobilization of biomolecules or oligopeptides on the scaffold surface, or by physical entrapment of bioactive molecules alone or incorporated in a
drug delivery system into the scaffold. These strategies can also be applied to enhance the bioactivity of scaffolds made from ECM-native materials such as those covered in the previous section.

3.1 Scaffolds as drug delivery systems

Engineered tissues need not only to fill a defect and to integrate into a host tissue, but they also need to meet the demands of a constantly changing - through growth or adaptation - tissue. It was hypothesized that those tissues capable of growing with time could be engineered by supplying growth stimulus signals to cells from the biomaterial used for cell transplantation (Alsberg et al., 2002). Smart drug delivery systems might not only be able to transmit one single signal to the cells, but multiple signals in concert in a timely controlled release pattern. This release may be controlled through properties of the drug delivery system itself: examples of those are biodegradation-controlled release devices or stimuli-sensitive systems (polymeric networks that react to changes in pH, temperature or to the presence of enzymes). In a further degree of sophistication, drug release can also be triggered through external physical stimuli such as ultrasounds or electrical fields (Deckers et al., 2008; Sirivisoot et al., 2011). Another method of remote drug delivery relies on magnetic nanoparticles and thermally sensitive vesicles (de Cogan et al., 2011; Mart et al., 2009a; Mart et al., 2009b). In these devices, heat originating from magnetic stimulation of nanoparticles induces swelling of the thermostensitive polymer and the subsequent drug release.

In tissue engineering, polymeric matrices used as scaffolds can double as drug delivery systems, a strategy that has been mainly used for soluble signalling molecules such as GFs (e.g. BMPs or TGF-β). GFs and cytokines have shown to be potent inducers of cell migration, proliferation, differentiation and new tissue formation. Many of them are also important morphogens in embryogenesis and natural wound healing through their action on stem cells. Therefore, there are large expectations set on GF therapeutic efficacy, particularly in combination with stem-cell-based therapies. Besides, many researchers believe that through the chemoattractant properties of these molecules, drug delivery devices will be able to mobilize the resident stem cell pool from the injured host, making reiterative any strategy based on stem cell supplementation. Cell recruitment and migration to the site of injury may be promoted through various signaling molecules. Many of these factors, e.g. TGF-βs, BMPs and IGF-1, are not only involved in cell attraction but also affect cell proliferation and differentiation (Lieberman et al., 2002; Reddi, 2001a; Reddi, 2001b; Sundelacruz & Kaplan, 2009).

Growth factors and cytokines – although very potent – usually present short half-lives, especially in physiological media. Also, their potential is highly dependent on their spatial and temporal action pattern, and a change in local concentration may have a huge effect (Uebersax et al., 2009). It follows that systemic administration of GFs is inherently inefficient, since it results in fast GF elimination and indiscriminate biodistribution. Ultimately, the therapeutic concentration of the GF may never be reached at the site of injury. To overcome this, drug delivery strategies are designed to (i) provide a platform for the localized delivery of the GF at the site of implantation creating a favorable concentration gradient, (ii) to protect the bioactivity of the molecule and (iii) to provide a controlled release pattern of the drug over a desired time frame. To add a further layer complexity, in developmental pathways, different factors become active at different times, and GF release
profiles that recapitulate these dynamics are likely to provide more leverage over cell behavior than those that apply these signals indiscriminately (Place et al., 2009). This is a central dilemma in tissue regeneration: on one hand, biomimetic platforms integrating complex release behavior are required for an optimal therapeutic outcome, but on the other hand, engineering needs to be kept to a reasonable level to provide technologically-feasible medical solutions (see section 4.2).

Two approaches have been mainly used for scaffold bioactivation: GFs can be encapsulated in a selected drug delivery system such as a microsphere or nanoparticle formulation, and these can be incorporated into the scaffolds. Alternatively, GFs might be incorporated directly into the scaffold itself (Holland & Mikos, 2006; Holland et al., 2007; Liu et al., 2010b; Luginbuehl et al., 2004; Shi et al., 2011; Uebersax et al., 2009). For example, IGF-1 has been incorporated into biodegradable poly(lactide-co-glycolide) microspheres and used as a treatment for 10-mm segmental tibial defects in sheep (Meinel et al., 2003). The application of 100 µg IGF-1 per defect resulted in the downregulation of inflammatory marker genes at the site of injury and the induction of new bone formation that bridged the defect within 8 weeks. Uebersax et al. explored the alternative approach, where IGF-1 was directly incorporated into porous 3D silk fibroin scaffolds (Uebersax et al., 2008). Silk scaffolds incorporating IGF-1 were able to preserve GF bioactivity, and prompted chondrogenic stimuli to seeded MSCs in vitro. By definition, implantation of GF-loaded scaffolds results in the localized delivery of the signaling molecule. Still, a certain fraction of the incorporated drug can reach the lymphatics or the circulation and distribute to non-target tissues. Therefore, even for these localized therapies, potential adverse effects of GF need to be carefully monitored. For example IGF-1 has been shown to be involved in diabetes or in the development of colorectal and breast cancers (Dunger et al., 2005; Putney & Burke, 1998; Sandhu et al., 2002).

Controlled or sustained release patterns may also be achieved through non-covalent association with matrix components, for example, with GAGs (section 2.3) (L. Zhang et al., 2006). In vivo, GAGs have critical roles in the regulation of GF activity. This includes sequestering GFs from the tissue liquid phase, acting as GF reservoir, preventing their degradation and presenting them to cell-surface receptors (Place et al., 2009). Regiospecific sulfation patterns that enable specific interactions between GFs and GAGs have been introduced in other biomaterials that are not natively from the ECM. This modification resulted in specific GF-scaffold bindings. For example, this has been done in alginate hydrogels and in silk fibroin scaffolds that have been decorated with sulfonated moieties capable of influencing the release of GFs such as FGF-2 (Freeman et al., 2008; Wenk et al., 2010).

Release upon cell demand is mainly based on protease-sensitive polymer modifications. For this strategy, peptide sequences that can be cleaved by proteases are introduced to hydrogel crosslinking groups, and the GF is loaded in this hydrogel. In the absence of proteases, the small mesh size of the hydrogels prevents the GF from being released. In their presence, proteolytic activity cleaves the crosslinks, increases the mesh size of the hydrogels resulting in the GF diffusion out of the polymeric mesh. This is again a biomimetic concept, since physiologically, the ECM not only provides structural and biochemical cues for cells in contact, but can also promote cell invasion and remodeling upon cell-triggered proteolysis, a process that ultimately results in tissue regeneration. Lutolf et al. used synthetic poly(ethylene glycol) (PEG) hydrogels containing crosslinking matrix metalloproteinase substrates that can undergo cell-mediated proteolytic degradation (Lutolf et al., 2003a). Upon degradation of the
matrix, entrapped BMP-2 was released and bone regeneration was achieved within 5 weeks in critical size cranial defects in rats (Lutolf et al., 2003b). This effect was highly reduced when BMP-2 was entrapped into matrix metalloproteinase-insensitive hydrogels. All drug release strategies mentioned above may also be combined resulting in even more complex strategies. For example Haberstroh et al. showed that human intervertebral disc-derived nucleus pulposus cell migration can be promoted through a serum fraction gradient in a concentration dependent manner and that both TGF-β3 and hyaluronan were able to promote cell differentiation and matrix generation (Haberstroh et al., 2009). They concluded that a bioactive scaffold containing serum and TGF-β3 or hyaluronan might be an excellent candidate for cell-free biological treatment strategies in preventive and curative approaches for degenerative disc disease.

There are other complex drug delivery strategies for tissue engineering that have not been covered in this manuscript. For example cells can be used as drug delivery systems. Especially immunocytes that are mobile and can migrate across impermeable barriers can be exploited as trojan horses for drug delivery (Batrakova et al., 2011). Applied cells may also be genetically modified in order to support immunomodulating, homing or paracrine activities at the implant (Myers et al., 2010). Besides, scaffolds can also be used for gene delivery, together with gene nanocarriers or by themselves. This last concept is usually referred as “gene activated matrices” and has attracted some attention for their use for skeletal tissue regeneration (Geiger et al., 2005; Guo et al., 2006). Besides this alternative methodologies based on genetically engineered cells and gene therapy, it is important to bear in mind that not only physiological factors can influence cell differentiation and tissue regeneration. Synthetic small molecular drugs such as dexamethasone, β-glycerophosphate or ions such as strontium released from bioactive glasses have also been shown to influence cell proliferation and differentiation (Chung et al., 1992; Isaac et al., 2011). Indeed, the potential of small molecular weight drugs for tissue engineering has been dramatically demonstrated by their capacity to markedly enhance cell-reprogramming efficiency, and even substitute many of the transgenes used in these processes (Huangfu et al., 2008).

3.2 Scaffolds bound to biological functionalities

In section 2, we highlighted the capacity of purified ECM compound scaffolds to provide sites for cell attachment and cell-substrate crosstalk (Fig.1). These scaffolds exert bioactivity because they bear complex information, coded in their physical and chemical structures. Unfortunately, scaffolds fully made out of natural ECM molecules present several limitations related to their difficult purification and processing and their suboptimal mechanical properties (Place et al., 2009). These limitations have broadened the range of scaffold materials investigated towards synthetic scaffolds that are functionalized with bioactive moieties. Most cell receptors do not require interacting with the whole ligand for their activation. Often, a relatively short peptide fragment of about 40 amino acids is sufficient to provide the desired signal to the cells. Indeed, it has been shown that small peptides can activate specific cellular pathways: binding their respective receptors, triggering signal transduction and leading to appropriate cells responses (Chung & T.G. Park, 2007; Place et al., 2009). The required peptide sequences can either be obtained from biological sources or can be chemically synthesized (Sreejalekshmi & Nair, 2011). As these small fragments are easier to produce synthetically and usually show quick refolding under physiological conditions,
they might represent a more cost-effective, easier to manipulate, alternative to GFs or other signaling proteins. Moreover, they have been shown to have a higher stability against conformational change, easy controllability of surface density and orientation, and more favorable ligand-receptor interaction (Chung & T.G. Park, 2007; Hersel et al., 2003; Lutolf et al., 2003b; Ruoslahti, 1996). Sreejalekshmi et al. has recently reviewed peptide-modified scaffolds, a manuscript that includes a decision-tree-type flow chart indicating probable cellular outcomes resulting from a given modification (Sreejalekshmi & Nair, 2011).

Cell attraction
- e.g. concentration dependent

Cell attachment
- + migration
- + ECM production

3.2.1 Fibronectin and small cell adhesion motifs

Cell adhesion is a prerequisite to the success of scaffold-based tissue engineering strategies. In native tissues, fibronectin is one essential component of the ECM that mediates cell-matrix interaction. Cells can bind to fibronectin through transmembrane receptor proteins of the integrin family, which mechanically interlink the actin cytoskeleton to the ECM through an elaborate adhesion complex. The binding process between ECM and the dimeric integrin receptors on the cells surface is then followed by a cascade of signaling events leading to the up- or downregulation of the expression of several genes. It is important to note that the binding of integrins happens through dimerization of different alpha and beta subunits, and therefore, association with diverse ligands can lead to different effects in the cell. Some specific functions of biopolymers can be attributed to small functional domains, and these may be incorporated in synthetic analogs in place of the full protein (Dunehoo et al., 2006; Schense et al., 2000; Silva et al., 2004). Probably the best-known sequence binding to integrins is arginine-glycine-aspartic acid (RGD). It is found in many ECM proteins, including fibronectin, laminin, collagen type-IV, tenascin and thrombospondin (Benoit & Anseth, 2005a; Comisar et al., 2007; Underwood et al., 1995). However, the RGD motif and its derivatives are not the only integrin-binding sequence used for scaffold modification. For example, polyethylene terephthalate surfaces modified with the cell adhesion motif
GRGDSPC showed improved differentiation of pre-osteoblastic cells as compared to non-grafted surfaces (Zouani et al., 2010). Alginate hydrogels modified with G4RGDY were able to support the formation of growth-plate-like structures in a co-culture of mouse osteoblasts and chondrocytes (Alsberg et al., 2002). In order to promote cell attachment, an adhesion motif can be simply mixed with the scaffold material or coated on the scaffold surface. Syndecan-binding peptides such as AG73 (RKRLQVQLSIRT) have shown enhanced integrin-mediated biological activities in scaffolds made out of collagen, laminin-11 and fibronectin (Yamada et al., 2011). Morphological analysis indicated that these effects were, at least partially, mediated by enhanced cellular attachment and cell spreading. Attia et al. have shown that polyurethane scaffolds containing an anionic dihydroxy oligomer coated with fibronectin promoted not just cell attachment, but also cell alignment parallel to the scaffold fibers (Attia et al., 2010). This featured scaffold topology was able to increase collagen production after seeding with annulus fibrosus cells. Genetically engineered biopolymers provide another method for the integration of bioactive sequences. Girotti et al. engineered an ECM-analogue of a recombinant multi(bio)functional elastin-like protein polymer with integrated REDV cell adhesion sequences for tissue engineering purposes (Girotti et al., 2004). Cells are known to be very sensitive to the mechanical properties of the substrate (Engler et al., 2006), but also to directional mechanical forces transduced through the ECM (Kurpinski et al., 2006). In skeletal tissues, where mechanical stresses are so important and even necessary for cell stimulation, the integration of adhesion motifs capable of transducing mechanical forces into the right cell signals is of critical importance (Fig. 2).

Fig. 2. Cell differentiation and extracellular matrix deposition can be affected by many different signals, e.g. mechanotransduction or cell signaling

3.2.2 Growth factors
Scaffolds may not only be modified with bioactive sequences, whole GFs have been shown to retain their bioactivity upon conjugation to scaffold materials. Through covalent
immobilization on the scaffold surface in either random or specific orientation many disadvantages of controlled GF delivery can be circumvented. However, in order to transmit the desired signal to the cells, the moiety must be accessible. This requires the GF to be exposed on the scaffold surface and not incorporated in the polymer core. The application of polymeric spacers such as PEG can provide higher biological activity due to reduced interaction between the GF and the scaffold. For example, collagen matrices were covalently modified with horseradish peroxidase as a model protein with or without PEG as a linker. Introduction of PEG resulted in higher long-term stability of the enzyme (Chen et al., 2002). Recombinant TGF-β2 was either covalently bound through a PEG spacer or admixed to injectable bovine dermal fibrillar collagen (Bentz et al., 1998). PEG-TGF-β2 showed a significantly higher in vitro and in vivo bioactivity than admixed TGF-β2. The authors concluded that covalent binding of TGF-β2 by their method allowed to preserve the GF’s biological activity in vitro, and even potentiated their response in vivo. Karageorgiou et al. have shown that immobilization of BMP-2 on a silk fibroin surface was more efficient in terms of osteogenic differentiation of MSCs in vitro than delivery of the GFs in solution (Karageorgiou et al., 2004). In a follow-up study, they could show that with the same protocol, porous 3D scaffolds modified with BMP-2 implanted into rat critical size femoral defects improved bone formation similarly to the same scaffolds seeded with either undifferentiated MSCs or with MSCs predifferentiated for 4 weeks in vitro before implantation (Kirker-Head et al., 2007). Clearly, the protocol used for biofunctionalization is a critical step for these technologies. De Mel et al. have recently published a review on biofunctionalization of biomaterials for accelerated in situ endothelialization (de Mel et al., 2008).

Not only complete GFs can be attached to scaffold surfaces, but also oligopeptides such as those derived from BMP-2 or BMP-7 that have been immobilized on alginate hydrogels and glass, respectively (Kirkwood et al., 2003; Saito et al., 2003; Suzuki et al., 2000). These in vitro studies, performed with a murine multipotent MSC culture or with primary rat calvarial osteoblastic cell populations showed that immobilized oligopeptides may have the capacity to induce osteoblastic differentiation and mineralization in a more predictable manner than the entire GF. This might be attributed to the lower complexity of the molecule and therefore increased stability. Implantation of a BMP-2 derived oligopeptide covalently coupled to alginate into the calf muscle of rats resulted in ectopic bone formation (Suzuki et al., 2000). Synthetic peptide mimics have also been applied for the promotion of angiogenic responses (X. Lin et al., 2006): F2A4-K-NS is a synthetic mimic of FGF-2 that has been shown to trigger signal transduction as monitored by the stimulation of ERK1/2 phosphorylation in human umbilical cord endothelial cells. In cell-based assays, it increased cell migration, cell proliferation and gelatinase secretion. When used in similar quantities, F2A4-K-NS achieved comparable response endpoints to those associated with FGF-2 stimulation.

As mentioned before, wound healing and tissue repair might be stimulated by GF release, but optimal effects are only achieved when several chemical signals are provided in the necessary order and at precise times during the regeneration process. This is probably one of the main disadvantages of GF conjugation to scaffolds, as there is no easy way to provide a time-dependent switch to activate/deactivate the provided signaling.

3.2.3 Other binding moieties: cleavage sequences and oligosaccharide domains
Incorporation of cleavage sequences is an interesting concept to provide on-demand GF delivery (see 3.1), and also to control cell invasion (Place et al., 2009). In this concept,
cleavage sequences engineered in multidomain peptides are integrated in the polymeric network of the scaffold. This function mimics the multilayered bioactivity of the ECM, where enzymatic remodeling can liberate “cryptic sites” contained within the ECM proteins. A nice example was provided by Lutolf et al., who rendered a synthetic PEG hydrogel network as amenable to both proteolytic degradation and cell invasion through the integration of integrin binding sites and substrates for matrix metalloproteases (MMP) (Lutolf et al., 2003a). Primary human fibroblasts were demonstrated to proteolytically invade these networks, a process that depended on MMP substrate activity, adhesion ligand concentration and network crosslinking density.

While most ligands that have been tested for tissue engineering so far were proteins, many scientists are turning to other biomolecules of high biological functionality: polysaccharides. Indeed, small oligosaccharide domains are involved in many cell-cell and cell-substrate interactions (Brown et al., 2008; Scaglione et al., 2010). Recent developments in understanding the role of natural polysaccharides and improved chemical synthesis of defined oligosaccharides will potentially result in the discovery of several new targets of interest in skeletal tissue engineering.

4. Key challenges

4.1 Engineering large tissue constructs – mechanistic issues

Since the first works showing the possibility to instruct cells to aggregate and form 3D-tissue constructs, tissue engineers have debated between forming tissues and organs de novo or just boosting the body’s intrinsic capacity for self-repair. Although in the long run the first of these concepts will probably result in technologies and therapeutic approaches of high medical interests, nowadays the second approach has gathered all the big success stories from a clinical perspective (Place et al., 2009). Devices that enhance tissue regeneration take advantage of environmental cues present at the wound site (i.e. progenitor cells, GFs and tissue ECM present at the wound borders) and accelerate the repair process by establishing a conductive matrix and by providing supplementary simulative factors. These factors can coordinate cell chemokinesis, cell differentiation and induction of tissue-specific ECM formation by committed cells. Many of these technologies in the form of bioactivated scaffolds and drug delivery devices are already a reality (Infuse™, Medtronic, Inc.) and others will become part of the orthopaedist’s arsenal in the next few years. A second generation of these technologies could integrate stem cells as a potential opportunity to promote further regeneration. However, it is still unclear whether additional stem cell transplantation results in enhanced regeneration in biomimetic scaffolds (Im et al., 2010). Devices driven by this concept of enhanced regeneration will most likely not be applicable to wounds above a certain size. In those cases, it is easy to argue that regeneration will be limited by nutrient and oxygen diffusion, as well as by the diffusion/migration of pro-regenerative factors (i.e. GFs, cells) (Muschler et al., 2004).

Tissue engineers study in vitro tissue formation as a potential way to generate tissues that could be later implanted in larger defects. While this concept presents several practical disadvantages compared to the most direct approach described above, it is possible that it could result in well-structured tissues that could ultimately be combined in the form of larger constructs. Still, this large constructs will be deprived of oxygen once formed and implanted, making it critical to induce the quick vascularization of the implanted tissue. In this approach, enhanced tissue construct survival could be achieved by co-implantation of
drug delivery devices capable of releasing proangiogenic GFs (Richardson et al., 2001) or by transplanting cells genetically modified to enhance their survival under hypoxic conditions (R.P. Ahmed et al., 2010). Still, conventional in vitro tissue engineering strategies will be unsuitable for very large tissue construct or for regenerating complex tissues/organs. Some very recent work indicated that through the use of relevant progenitor cells and sophisticated bioreactors, complex and even vascularized tissues might be formed in vitro (Tsigkou et al., 2010). Additionally, other studies have shown that even small organs can be engineered in vitro by culturing cells in reprocessed tissue scaffolds (i.e. decellularized tissues) (Ott et al., 2008). While these advances are really impressive, we must bear in mind that the mechanisms used for tissue/organ neogenesis in vitro are far closer to those involved in tissue regeneration than in physiological organogenesis. In vitro tissue formation occurs by the penetration of committed cell populations into a scaffold, the formation of cell-cell and cell-scaffold interactions and the formation of new tissue. That would also be, simplified, the sequence of events leading to tissue remodeling after cell colonization of blood clots during wound regeneration. On the other hand, organ morphogenesis is a highly orchestrated process occurring during embryogenesis where the tissues are formed by a sequence of very defined events in a growing construct. In morphogenesis, cells undergo sequential differentiation steps under a very defined spatial and temporal regulation. This regulation is usually defined by gradients of morphogens, but also by cell polarity occurring from integrin-mediated cell-cell interactions (Krasnow, 1997). Further studies will define if in vitro strategies based on tissue regeneration mechanisms such as those tested by Ott et al. and Tsigkou et al. can result in functional, clinically useful tissues and organs.

In any case, knowing which tissue formation mechanism you are trying to recapitulate is important when designing a tissue-engineering strategy. For example, this is pertinent to bone engineering, where most strategies try to induce MSC differentiation to osteoblasts despite of the fact that this process is only physiological in intramembranous bone regeneration. For long bones, the physiological growth and regeneration process is through endochondral ossification. Endochondral ossification is a multistep process where cartilage is initially formed at the defect site, the cartilage becomes hyperthropic, and then it is remodeled into bone by osteoclasts and osteoblasts. Some steps of endochondral bone formation are recapitulated in DBM implanted subcutaneously (J. Wang & Glimcher, 1999a), and this process has also been studied as an advanced tissue engineering strategy in some recent works (Oliveira et al., 2010).

4.2 Engineering a complex environment

Tissue regeneration and tissue neoformation are very complex phenomena. Indeed, the cascade of events after a lesion is formed comprises blood clot formation, inflammation, formation of scar tissue and tissue remodeling. Every one of these processes requires a finely orchestrated cascade of cellular and molecular events. As an illustration, Gerstenfeld et al. have investigated the levels of GFs, other pro-inflammatory cytokines and MMPs occurring during bone regeneration after a traumatic injury (Gerstenfeld et al., 2003), and their studies show the involvement of a myriad of different molecules, present only at specific stages in the process. This complexity is not as surprising: GFs are known to have synergistic effect for many applications as they trigger coordinated effects in their effector cells. Moreover, it is known that all GF effects are very context-specific and concentration-dependent, and therefore, changes in the target cells induced by one GF could drastically change the effect of
a second GF (Massagué, 2000). This results in the necessity to design a very complex environment if we want to recreate all these cues in biomimetic scaffolds.

But is this complexity compatible with realistic engineering solutions for tissue regeneration? If something we have learnt from the decline and rise of the tissue engineering field it is the necessity to look for realistic objectives and to avoid overengineered technologies (Place et al., 2009). In short, technologies that are now a success are those that have kept concepts simple. Dealing with the problem of engineering acceptably simple technologies to manipulate a complex process requires a practical approach. First, it is necessary to study how sophisticated your system needs to be for each specific application. For many applications, just the addition of a good tissue-conductive material might suffice. For other applications, this material could be bioactivated with an inducer or seeded with relevant cell populations. Optimization of these strategies could probably rely on high-throughput analysis and systems biology to identify the main signals required for inducing tissue regeneration (Anderson et al., 2004; Anderson et al., 2005; Langer & Tirrell, 2004). For more complex challenges, engineers could turn to reprocessed tissue scaffolds that might be capable of producing some complex tissue structures. Addressing the challenges with technologies that integrate the level of complexity needed to meet the demands of the medical problem addresses complexity from a management perspective. From a technical perspective, many research groups are working in technical solutions that allow implementing complex signaling in the scaffolds with relatively simple chemistries. Examples highlighted in this chapter on the use of small synthetic peptides (Sreejalekshmi & Nair, 2011) or molecules (Ding et al., 2003) and on the formation of material composites including biomimetic compounds might be just some of these simple technologies.

4.3 Controlling stem cell fate and individual variability

New tissue engineering strategies can benefit enormously from the concomitant use of stem cells. However, to fulfill the potential of these technologies, improved control over stem cell fate needs to be exerted, particularly in some applications. For instance, some scaffolds have been designed to maintain stem cells in an undifferentiated state for several passages, thus enhancing their capacity for renovation and cell population growth. Differentiation of stem cells can be achieved by their exposition to defined media. This approach is very efficient for some skeletal tissues (e.g. bone), but leads to suboptimal results for others: hyaline cartilage, skeletal muscles and tendon (Brent et al., 2005; Buckwalter & Brown, 2004). When designing tissue engineering strategies for these applications it is important to consider whether environmental cues from the host tissue might help to improve the differentiation process. Indeed, some experiments have shown tissue repair upon implantation of stem cells despite the questionable ability of these cells to differentiate to these tissues. In cases with modest stem cell contribution to tissue regeneration, bioactive scaffold materials can help to direct stem cell differentiation by introducing important environmental cues: nanotopology (Yim & Leong, 2005), mechanical properties of the supporting scaffold (Engler et al., 2006), or chemical moieties (Anderson et al., 2004). In extremely difficult situations, directed cell differentiation might be addressed by gene therapy approaches (Selvaraj et al., 2010). Controlling stem cell differentiation is critical not only to engineer tissues matching the structure, composition and properties characteristics of native ones, but also to prevent undesirable processes such as orthotopic tissue formation, scar formation and even, potential tumor induction (Amariglio et al., 2009).
Reliance on stem cell therapies raises also the topic of individual variability (Odorico et al., 2001). Stem cells collected from different donors are known to respond very differently to inductive stimuli, to present different capacities for GF secretion and ultimately, to have extremely different regenerative capacities. When designing tissue engineering devices based on stem cells, it would be critical to have quick tests ensuring a minimum of activity, similarly to the approach taken with conventional drugs. However, this concern does not only apply to tissue engineering products containing stem cells, but also to scaffolds and drug delivery devices intended for conduction and induction of a stem cell-mediated responses. A case in point would be the elder or diseased population, where resident stem cell pools might be partially depleted and their full pro-regenerative capacity compromised. The efficacy of tissue engineering devices will need to be tested in these populations, and specific recommendations be issued to take into account this potential variability.

Tissue engineered products based on in vitro cultured stem cells face another important limitation related to their necessary culture time. In vitro, tissues need to be cultured for several weeks and in many cases, this time is not an option for a therapeutic intervention. Even in those cases where this time is available, the postponed surgery will result in an uncomfortable situation for the patient, in increased medical and social costs and in potential worsening of the medical condition. Medical technologies that can be applied immediately out-of-the-box are therefore preferred, and bioengineers should consider this important limitation and the competing therapeutic options when deciding for these technologies.

4.4 Technical challenges

Although encapsulation and controlled release of macromolecules has now been studied for several decades, they are difficult technologies to get right due to the easy denaturation of the drug, to the difficulties to predict release in vivo, and even to potential patient-specific issues that could change the release kinetics of the system. This problem translates to GF-release devices, where potential denaturation of the drug combines with the added concern of their very high manufacturing costs. Growth factor denaturation can occur at three steps during their integration in a drug delivery device: (i) during encapsulation, (ii) upon storage and (iii) upon implantation in the release phase. In practical terms degradation during storage (ii) is infrequent and only applies to formulations in aqueous phases, or with materials that could cross-react with the GFs. For most solid formulations where the matrix is stable for long periods of time, this process should not be a concern. GF degradation during encapsulation (i) is usually a concern, and in most cases, can only be minimized and not completely avoided (Sah, 1999). To prevent GF degradation, exposure to high temperatures should be avoided, and high shearing forces and solvent/water interfaces minimized as possible. In any case, it is possible to enhance GF stability by adding other proteins and protecting groups that block the solvent/water interface. This works particularly well with GFs because of the low loading required that could lead to a high disproportion between the protecting protein/compound and the GF. Growth factor denaturation during the release phase (iii) is a concern for many polymeric systems whose degradation byproducts might react with the proteins. This is best illustrated by polyesters, probably the most used materials for sustained release of GFs. When implanted in the body, polyesters are known to hydrate and start their decomposition, which can occur at the surface but also at the inner matrix (Rezwan et al., 2006; Zhu et al., 2000). As the polyester
Bioactive Scaffolds for the Controlled Formation of Complex Skeletal Tissues

Bioactive scaffolds can be designed to mimic the properties of natural extracellular matrix (ECM) and support the formation of complex skeletal tissues. Degradation products of the scaffold can form acidic oligomers that remain trapped within the polymeric network, creating an acidic microclimate that degrades the growth factor (GF). This mechanism is similar to that of polymers where degradation products can react with or degrade the GFs. For GF delivery, it is best to select materials that do not result in reactive degradation products or undergo surface erosion (e.g., polyanhydrides). Further protection can be achieved by incorporating buffering agents. Interestingly, some polyester composites have shown capacity to protect macromolecules both during encapsulation and release. In any case, providing a bioactive form continues to be a challenging objective.

Another strategy involves covalent tethering of proteins to the scaffold. However, unselective binding can lead to potential bioactivity loss if critical amino acid regions are modified. Covalent tethering presents difficulties in terms of specificity, as some selective reactions have been designed, but most protocols involve binding through several amino acids of the peptidic chain. Immobilized GFs have generally shown good bioactivity, but concerns remain regarding the regulatory pathway and clear molecular structure.

5. Concluding remarks

We have made significant progress in tissue engineering, from the first discoveries of conductive tissue scaffolds to the use of reprocessed tissues (DBM) and ECM-containing products, emphasizing a biomimetic approach. Biopolymer-derived and bioactivated synthetic scaffolds have been studied extensively, with GF delivery integrated into various devices. Commercial success stories, such as INFUSE™ from Medtronic, Inc., have been achieved, but the potential of tissue engineering extends beyond simple injury models. Recent studies demonstrate the possibility of engineering complex tissues and even small organs. Further optimization of biomimetic scaffolds and improved bioreactors will be necessary to realize these goals. Another technology expected to be commercialized soon involves integrating stem cells, requiring not only proliferation and differentiation capabilities but also tissue formation. This concept is a priority in tissue engineering, bioregenerative medicine, and government scientific agendas.
6. Acronyms used

BMP: bone morphogenic protein
DBM: demineralized bone matrix
ECM: extracellular matrix
EGF: epidermal growth factor
FGF: fibroblast growth factor
GF: growth factor
IGF: insulin-like growth factor
MMP: matrix metalloprotease
MSC: mesenchymal stem cell
PDGF: platelet-derived growth factor
PEG: poly(ethylene glycol)
qRT-PCR: quantitative reverse transcription polymerase chain reaction
TGF: transforming growth factor
VEGF: vascular endothelial growth factor

7. Acknowledgments

MGF acknowledges an Isidro Parga Pondal contract from Xunta de Galicia. This work was financed by Xunta de Galicia (PGIDIT07PXIB203067PR) and the Spanish Ministry of Science and Innovation (Programa de Investigación en Salud, PS09/01786).

8. References

Bioactive Scaffolds for the Controlled Formation of Complex Skeletal Tissues

Bioactive Scaffolds for the Controlled Formation of Complex Skeletal Tissues

Angiogenesis and Vascularity for Tissue Engineering Applications

Remo A. Largo¹, Venkat M. Ramakrishnan¹, Martin Ehrbar², Algirdas Ziogas², Jan A. Plock³ and Daniel Eberli¹

¹Division of Urology, University Hospital Zurich
²Division of Obstetrics, University Hospital Zurich
³Division of Plastic and Hand Surgery, University Hospital Zurich
Switzerland

1. Introduction

Tissue engineering is a field of medicine that has experienced significant growth in prominence over the past three decades. Though traditional interventions exist for many medical maladies, tissue engineering aims to combat such disorders through the synthesis of body tissues and organs, resulting in functional implants. Tissue engineering takes an innovative approach, often utilizing autologous stem cells for tissue construction or materials that are biocompatible while avoiding immune rejection (Nomi et al., 2002).

Despite its immense successes, a major hurdle still faces tissue engineering. Large volumes of implanted tissue are unable to stimulate the formation of necessary blood vessels required for their survival. In the body, naturally occurring, equivalent vascular networks serve vital functions in gas and nutrient exchange, metabolic processes, and waste expulsion. Though individual, large vessels have been successfully engineered for implant, it is still exceptionally difficult to fashion a stable and sustainable network of vessels for large volumes of tissue (Nomi et al., 2002). Neovascularization after tissue damage requires a level of positive and negative control that has not been successfully replicated in a laboratory environment to date. As such, rapid de novo synthesis of a controlled, established vascular network remains a challenge today.

Angiogenesis is the morphogenic process of forming new blood vessels from pre-existing ones (Laschke et al., 2006; Dai and Rabie, 2007; Li and Rabie, 2007). This event plays an important, normal physiological role in wound healing, tissue repair, pregnancy, and exercise (Ferrara and Davis-Smyth, 1997), and exists in contrast to vasculogenesis (the formation of the every first blood vessels in the body, and especially predominant in embryological development). Yet, the abuse of angiogenesis, leading to an uncontrolled vascular formation as a consequence of epigenetic influence, nucleotide polymorphisms, or endocrine irregularities can also result in tumor formation (Verbridge et al., 2010). However, angiogenesis is clearly an activity that is central to development and tissue maintenance. Successful modulation of angiogenesis can have profound therapeutic outcomes for organs and tissues deprived of an adequate, stable vasculature. Studies from the last two decades have shown that the manipulation of various factors directly influences angiogenic outcome.
Angiogenesis requires the activity of soluble factors such as Vascular Endothelial Growth Factor (VEGF; outlined in the next section and in Tables 2 & 3), basic Fibroblast Growth Factor (bFGF), Platelet-derived Growth Factor (PDGF), Transforming Growth Factor-β (TGF-β) (Nomi et al., 2002; Dai and Rabie, 2007; Li and Rabie, 2007; Kanczler and Oreffo, 2008; Bates, 2010), Keratinocyte Growth Factor (KGF) (Elia et al., 2010), Hepatocyte Growth Factor (HGF) (Hoot et al., 2010), Ephrin-B2 (Herbert et al., 2009), and Angiopoietin (Han et al., 2010) (Table 1). Morphologically, angiogenesis can be attributed to endothelial cell migration and proliferation as well as pericyte recruitment, migration and differentiation (Egginton, 2010).

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Known Properties</th>
<th>Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Fibroblast Growth Factor (bFGF)</td>
<td>Stimulates activity of fibroblasts, neurons, smooth muscle cells, and endothelial cells; acts via tyrosine kinase receptors; induces production of VEGF during angiogenic stimulation.</td>
<td>(Pepper et al., 1992; Lee et al., 2003; Arkudas et al., 2007; Jung et al., 2010; Wu et al., 2010)</td>
</tr>
<tr>
<td>Platelet-derived Growth Factor (PDGF)</td>
<td>Certain isoforms possess survival and mitogenic functions; implicated in tumor angiogenesis; compared to VEGF, PDGF: (a) has comparable angiogenic activity, (b) produces blood vessels with decreased permeability and leakage, and (c) is thought to produce functionally different blood vessels.</td>
<td>(Li et al., 2010; Wu et al., 2010)</td>
</tr>
<tr>
<td>Transforming Growth Factor β (TGF-β)</td>
<td>Promotes and inhibits angiogenesis and tumor invasion via stimulation of Hepatocyte Growth Factor (HGF) expression.</td>
<td>(Hoot et al., 2010)</td>
</tr>
<tr>
<td>Keratinocyte Growth Factor (KGF)</td>
<td>Member of FGF family; certain isoforms have been implicated in wound healing as well as the inhibition of neovascularization.</td>
<td>(Wang et al., 2010)</td>
</tr>
<tr>
<td>Hepatocyte Growth Factor (HGF)</td>
<td>Stimulates endothelial cell growth, migration, scatter, and elongation independently of VEGF.</td>
<td>(Hoot et al., 2010)</td>
</tr>
<tr>
<td>Ephrin-B2</td>
<td>Implicated in arterial/venous differentiation (see section: Modulation of Notch Signaling).</td>
<td>(Herbert et al., 2009)</td>
</tr>
<tr>
<td>Angiopoietin</td>
<td>Signals through Tie receptors; certain isoforms are angiogenic inhibitors, while others promote inhibition of apoptosis; Stabilize blood vessels and reduce leakage.</td>
<td>(Han et al., 2010)</td>
</tr>
</tbody>
</table>

Table 1. Notable Ancillary Growth Factors and Their Properties

2. VEGF and its receptors: a brief overview

In studying the development of cells, tissues, and organs, Vascular Endothelial Growth Factor (VEGF) has been identified as a key, though not sole, proponent of angiogenesis (Takahashi and Shibuya, 2005; Arkudas et al., 2007; Dai and Rabie, 2007; Yla-Herttuala, 2009;
Angiogenesis and Vascularity for Tissue Engineering Applications

Bates, 2010; Elia et al., 2010). VEGF exists in six classes (Table 2), lettered A through F, though the vast amount of literature concerning VEGF-A indicates that it is by far the most widely understood of all. VEGF-A exists in at least eight homodimeric isoforms, all conceived by alternative mRNA splicing (Ferrara, 2009) and differing by their amino acid number. Of these, VEGF121 and VEGF165 are predominant and show great promise in tissue engineering applications.

<table>
<thead>
<tr>
<th>VEGF Class</th>
<th>Known Properties</th>
<th>Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Induces proliferation of arterial, venous, and lymphatic vascular endothelial cells; stimulates monocyte chemotaxis; hematopoetic effects; eight isoforms in humans.</td>
<td>(Ferrara, 2009)</td>
</tr>
<tr>
<td>B</td>
<td>May play role in atrial conduction, but not required for cardiovascular development.</td>
<td>(Olofsson et al., 1996a; Olofsson et al., 1996b; Aase et al., 2001)</td>
</tr>
<tr>
<td>C</td>
<td>Involved in embryonic angiogenesis, lymphangiogenesis, & lymphatic vessel maintenance; mitogenic for cultured endothelial cells.</td>
<td>(Kukk et al., 1996; Orlandini et al., 1996; Jeltsch et al., 1997; Yamada et al., 1997; Dumont et al., 1998)</td>
</tr>
<tr>
<td>D</td>
<td>Thought to be involved in pulmonary development, endothelial cell mitogen; Function(s) still generally unclear.</td>
<td>(Orlandini et al., 1996; Yamada et al., 1997; Achen et al., 1998; Farnebo et al., 1999)</td>
</tr>
<tr>
<td>E</td>
<td>Proteins are encoded by Orf-viruses and predominantly expressed in sheep, goats, and rarely in humans.</td>
<td>(Lyttle et al., 1994; Meyer et al., 1999)</td>
</tr>
<tr>
<td>F</td>
<td>Derived from snake venom; enhances the formation of vascular fenestrations in guinea pigs.</td>
<td>(Klein and Catargi, 2007; Matsunaga et al., 2009; Yamazaki et al., 2009)</td>
</tr>
<tr>
<td>Placental Growth Factor (PlGF)</td>
<td>Induces vascular permeability; supplements VEGF activity during wound-healing; may enhance VEGF-driven angiogenesis.</td>
<td>(Carmeliet et al., 2001; Adini et al., 2002; Hattori et al., 2002; Luttun et al., 2002; Odorisio et al., 2002)</td>
</tr>
</tbody>
</table>

Table 2. Six General VEGF Classes
The binding of VEGF to any of its many receptors, such as VEGF-R1 (Flt-1) (Shibuya et al., 1990; de Vries et al., 1992), VEGF-R2 (KDR) (Terman et al., 1991), VEGF-R3 (Flt-4) (Fitz et al., 1997), and Neuropilin (NRP-1 and -2) (Soker et al., 1996; Soker et al., 1998; Dallas et al., 2008), has been shown to trigger a signaling cascade that results in the activation of angiogenesis (Stefanini et al., 2009). Not surprisingly, VEGF receptor and ligand placement and density have been implicated in the successful transmission of the signaling cascades required for angiogenesis (Stefanini et al., 2009). Modulating receptors and their densities appear to be a logical avenue for further efforts in modulating neovascularization. Further, Heparin Sulfate Proteoglycan (HSPG) has been implicated in the binding of VEGF to their receptors, but its exact function remains unclear (Ferrara et al., 2003; Lee et al., 2010). Preliminary findings suggest that HSPGs inhibit VEGF binding to its receptors, and consequently, angiogenic activity (Lee et al., 2010).

3. Modulations to VEGF and its delivery

Though VEGF has a significant influence on cell migration, proliferation, and vasodilation, the uncontrolled or sole use of VEGF in vivo has been shown to result in the disordered growth of blood vessels into a dense mass (hemangioma), malignant tumor angiogenesis, and the assembly of leaky vessels (Takahashi and Shibuya, 2005; Bates, 2010). As such, the fundamental function of VEGF in physiological development and maintenance, contrasted by its role in tumorigenesis and vessel instability, is paradoxical. In instances where VEGF is heterogeneously present in a microenvironment, areas of high VEGF expression resulted in abnormal angiogenesis. However, implanting VEGF-transfected myoblasts, with each cell equally producing VEGF over time, led to the formation of a stable, normal vascular network (Misteli et al., 2010). The latter provides a compelling case for carefully-controlled VEGF release, distribution, and kinetics in tissue engineering applications. As discussed below, several current tissue-engineering efforts are positioned to resolve this dilemma.

It should not be assumed that blind administration of VEGF is solely responsible for a successful angiogenic effort. Many studies have illustrated that the promotion of successful angiogenesis depends on a prolonged exposure to a low dose of VEGF (Wernike et al., 2010), while other studies claim that micro-environmental conditions must be taken into account (Ferrara and Davis-Smyth, 1997; Misteli et al., 2010). With regards to the latter, techniques like FACS purification (Misteli et al., 2010) and microdialysis (Hoier et al., 2010; Marcus et al., 2010) are becoming increasingly prevalent in closely monitoring VEGF expression in the microenvironment. Further, many attempts at eliciting controlled angiogenesis also focus on coupling the properties of VEGF with certain other growth factors – most notably bFGF (Arkudas et al., 2007) or KGF (Elia et al., 2010) (see Table 1); stable vessels were formed when VEGF was combined with either of these two factors.

There exist contradictions regarding the parameters of tissue exposure to VEGF. In one comparison, a study highlighting growth factor implementation in orthopedic applications suggested that VEGF delivery for over 14 days may have interfered in the vascularization during bone healing and restoration (Wernike et al., 2010). This suggestion challenges an argument that a longer VEGF exposure (of approximately one month) was necessary for the production of stable, but leaky, vessels as brief exposure to VEGF (less than 15 days) resulted in the formation of unstable vessels. Further, these vessels actually degenerated after VEGF delivery cessation (Tafuro et al., 2009). Disparities such as this are common in the
literature and demonstrate the sheer complexity of VEGF activity in various tissue environments.

The view that successful VEGF delivery and angiogenic response are strictly dose-dependent is challenged by factors such as delivery kinetics, which appear to be critical for proper vasculature (Borselli et al., 2010; Wernike et al., 2010). For instance, a characteristic problem with the bolus delivery of VEGF is the outcome of variable systemic effects (Matoka and Cheng, 2009) such as haemorrhage, hypotension, or flu-like symptoms (Benjamin et al., 1999). This method of delivery also fails to achieve the prolonged supply of physiological low dose of VEGF necessary to produce a mature, lasting vascular network. The lack of lasting vessel formation observed in many therapeutic trials is probably due to difficulties in the delivery of VEGF, a growth factor with an apparently narrow therapeutic window (Hariawala et al., 1996; Lee et al., 2000; Dor et al., 2003; Ozawa et al., 2004), in the optimal time and dose for maintaining sufficient vascularity.

A need exists for biomaterials or stable scaffolds that enable slow, sustained VEGF release (Rocha et al., 2008) for a predictable and functional outcome. Studies in different laboratories have indicated that incorporation of growth factor into slow-release polymer formulations could present a means for better control of dose, location, and duration of active signals in tissue (Edelman et al., 1991; Lee et al., 2000; Sheridan et al., 2000; Ehrbar et al., 2004). The kinetics of VEGF delivery today depends on the physical properties (such as cross-linking and porosity, for instance) of biocompatible conduits such as fibrin-gels (Ehrbar et al., 2004; Arkudas et al., 2007), gelatin microparticles (Patel et al., 2008), collagen / fibronectin hydrogels (Glotzbach et al., 2010), and PLG(A) scaffolds (Murphy et al., 2000)(Rocha et al., 2008; Matoka and Cheng, 2009; Borselli et al., 2010; Golub et al., 2010). Moreover, transfecting or transducing developing cells (muscle precursor cells or myoblasts, for instance) with VEGF and subsequently injecting them into a site can also provide a steady, longer-term delivery of the growth factor (Misteli et al., 2010).

Once VEGF is coupled with a delivery conduit, a more intricate approach to controlling VEGF delivery involves modifying the factor itself. Extensive delivery-mechanics research was conducted with the isoform VEGF121. Though VEGF121 is initially confined within a biomaterial (such as a fibrin-gel matrix) upon implant, plasmin and metalloproteinase degradation of the implant over time allows for the rapid, free diffusion of VEGF121 into the whole body environment (Ehrbar et al., 2004), potentially resulting in angiogenesis that may not be localized. Additionally, the short biological half-life of VEGF impedes its use in long-term applications. A synthetic variant of VEGF121, known as TG-VEGF121, cross-links to fibrinogen by the transglutaminating activity of factor XIII during fibrin-gel polymerization. This covalently tethered TG-VEGF121 is protected from rapid diffusion. Gradual degradation of the fibrin-gel by local fibrinolytic activities results in a local liberation of low levels of TG-VEGF121 into tissue. Experimental animal models have shown that fibrin-conjugated TG-VEGF121 produced more structurally stable vessels than VEGF121 while avoiding vascular leakage (Ehrbar et al., 2004; Ehrbar et al., 2008).

4. Hypoxia-mediated control and modulation of notch signaling

Hypoxia presents another means of employing direct control on VEGF and ancillary angiogenic factors. In the low-oxygen environments of normal muscle, VEGF mRNA experiences decreased degradation and increased expression (Ikeda et al., 1995; Levy et al., 1995; Levy et al., 1996; Tang et al., 2004), though severely hypoxic settings will actually
impede VEGF up-regulation (Milkiewicz et al., 2004). VEGF mRNA stability is made possible by its interaction with HuR, a complex that binds and stabilizes RNAs, consequently regulating gene expression (Levy et al., 1998). The increase in VEGF production can be attributed to the Internal Ribosome Entry Site (IRES), which is accountable for efficient factor synthesis under hypoxic conditions (Stein et al., 1998). Other proteins can also impact VEGF efficiency and activity. Control of expressed VEGF lies with ORP150 (oxygen regulated protein), a chaperone that transports VEGF from the cell’s endoplasmic reticulum to the Golgi apparatus (Kuwabara et al., 1996; Ozawa et al., 2001). An increase in ORP150 levels correlates with an increased production of VEGF during hypoxia (Ozawa et al., 2001). Further, Hypoxia-inducing factor (HIF) is responsible for activating the transcription of genes associated with neovascularization (Covello and Simon, 2004; Ramirez-Bergeron et al., 2006). These proteins represent points of control for VEGF modulation.

Because angiogenesis is the synthesis of vasculature from existing vessels, constant remodeling and modification of vessels takes place in vivo. Existing endothelial cells, such as stalk and tip cells, have receptors that respond to environmental conditions like hypoxia, in which Notch signaling (driven by VEGF-A presence) is most prevalent. The presence of VEGF-A leads to an increase in the presence of Delta-like Ligand 4 (DLL4), a major Notch ligand. It is believed that Notch signaling modulates the ratio of VEGF to its receptors through the inhibition of VEGF-R2.

Manipulation of the Notch signaling pathway presents another means of controlling angiogenesis. Cao, et al., discussed the role of Notch signaling in modulating VEGF activity, resulting in effective pruning and branching of vascular vessels (Cao et al., 2009; Cao et al., 2010). Activation of the Notch signaling pathway inhibits VEGF signaling by down-regulating the VEGF receptor synthesis. With fewer available receptors for free VEGF to bind, endothelial cell proliferation is effectively curbed. This process occurs at the cellular level of the lining endothelium, a major component of vascular vessels, and vascular growth in any particular direction is controlled.

5. Applications in regenerative medicine: notable case studies

Recent advances in understanding the angiogenic process and isolating potent and specific angiogenic growth factors prompted their therapeutic usage. Evidence that VEGF is a specific endothelial cell growth factor suggested its potential in therapeutic angiogenesis. Injection of the VEGF165 protein enhanced revascularization of rabbit ischemic hindlimbs (Takeshita et al., 1994). VEGF treatment induced collateral vessel formation, endothelium-dependent blood flow and tissue perfusion. VEGF has been tested for potential beneficial effects on wound repair in diabetic animal models (Greenhalgh et al., 1990; Tsuboi and Rifkin, 1990; Frank et al., 1995). The growth factor treatment regimens accelerated granulation, tissue formation, and wound closure. However, due to the high clearance and/or degradation of the proteins from the administration site, topically administered growth factors would require high dosages and frequent delivery.

An alternative strategy for therapeutic angiogenesis is gene therapy using recombinant angiogenic growth factors. The first study using VEGF165 cDNA was performed by gene transfer into the iliac artery of an ischemic hindlimb of a rabbit (Bauters et al., 1994; Takeshita et al., 1996). VEGF protein was expressed at the site of injection, augmenting the formation of collateral vessels. Subsequently, intramuscular gene transfer of VEGF cDNA
Angiogenesis and Vascularity for Tissue Engineering Applications

was used in a similar model with similar results (Asahara et al., 1996). This technique was further employed in patients with peripheral vascular disease and critical limb ischemia (Isner et al., 1996). Clinical trials showed significant improvement in collateral blood flow, healed ischemic ulcers, and most importantly, salvage of limbs in patients in whom amputation was imminent (Isner, 1998; Isner and Takayuki, 1998). VEGF protein and cDNA have been used for coronary revascularization, resulting in improved myocardial perfusion and increased collateral density (Isner and Losordo, 1999).

As previously discussed, a successful angiogenic outcome is not solely attributed to VEGF implementation alone (discussed in Section 3 and Table 1). Wilcke, et al., showcased the coupling of VEGF with bFGF in a fibrin dermal substitute (Wilcke et al., 2007). This led to a marked improvement in factor delivery, with a notable, prolonged release and resulted in a higher density of newly developed vessels in in vivo murine models. Concurrently, an in vivo experiment performed by Zacchigna, et al., studied the effect of a VEGF and Angiopoietin 1 (Ang 1) combination (delivered via an adeno-associated viral vector, for long-term protein production and release) on the muscle blood flow (MBF) and vascular permeability of rat skeletal muscle (Zacchigna et al., 2007). The grouping elicited a marked increase in both resting MBF and perfusion post exercise stimulation. To contrast, VEGF expression alone did not enhance the resting MBF and actually reduced tissue perfusion after exercise.

Elcin, et al., researched in vitro release kinetics and in vivo angiogenic effects of human VEGF-loaded PLGA sponges in rats (Elcin and Elcin, 2006). When compared with control sponges (containing no factor) and bolus injections of VEGF, the use of VEGF-loaded PLGA sponges led to the establishment of neovascularized sites suitable for tissue engineering purposes. Patel, et al., who utilized VEGF-loaded gelatin microparticles infused in biodegradable composite scaffolds, outlined another notable attempt in VEGF delivery modulation in the field of orthopedics (Patel et al., 2008). Findings suggested that modulating the degree of gelatin cross-linking could affect VEGF release into the microenvironment and, consequently, angiogenic outcome. Ennett, et al., studied the temporally regulated delivery of VEGF in vivo, hypothesizing that the means of VEGF-loading into a delivery scaffold would have an impact on the factor release kinetics (Ennett et al., 2006). They compared (a) VEGF loaded directly into a PLG scaffold with (b) VEGF pre-encapsulated in PLG microspheres that were later used to fabricate a PLG scaffold. Though pre-encapsulated VEGF microspheres further delayed the factor’s release into the surrounding environment, this approach produced a desirable angiogenic outcome, with significant local angiogenesis and negligible systemic effects.

Pre-encapsulation of VEGF by nanoparticles or microspheres has also been investigated in conjunction with Matrigel hydrogels, PLGA-, and collagen-scaffolds. While it is clear that encapsulation protects the factor(s) within the nanoparticles and microspheres, it also offers a mechanism of controlled release – especially ideal for a potent angiogenic factor like VEGF. Even though pre-encapsulated VEGF-loaded PLGA scaffolds performed better than similarly loaded Matrigel hydrogels (with respect to release profiles in a saline solution; also in comparison with free VEGF) in vitro, both of the loaded delivery conduits improved angiogenesis in vivo. An increase in both endothelial cell counts and red blood cells was noted at the sites of implantation (des Rieux et al., 2010). Further, VEGF-loaded PLGA microspheres combined with collagen elicited strong enhancements to vascular sprouting and activation of endothelial cells in vivo and in vitro, respectively (des Rieux et al., 2010).
The idea of optimizing delivery agents combined with the notion that co-factor usage is ideal for neovascularization resulted in an experiment that analyzed the co-implementation of VEGF with FGF-2 via an acellular collagen scaffold implant (Nillesen et al., 2007). An implant containing both factors resulted in the highest vessel density and the most mature blood vessels (characteristics of an enhanced, stable vasculature) in a rat model when compared with scaffolds containing either of the factors alone or no factor at all.

6. Conclusion

A significant challenge facing tissue engineering lies in eliciting controlled neovascularization. Controlled neovascularization can have a profound impact in vessel and organ synthesis, as well as in the treatment of damaged tissues. Many current attempts for such control entail the use of VEGF. Attempts at fabricating an ordered vascular network include changes to VEGF through structural modification, the employment of strategies controlling its release, and coupling VEGF to other growth factors.

Yet, despite the promises shown by VEGF, significant obstacles remain. Many researchers propose that use of growth factors alone will not ensure stable angiogenesis. Rather, a combination of growth factors (VEGF and bFGF, for example), delivery methods, and modulation of inflammatory responses (via fibroblast, macrophage, cell-adhesion molecule and cytokine manipulation, for instance) and pathways (such as hypoxia and Notch) are thought to facilitate adequate vessel fabrication and stability.

Additionally, investigation into the mechanisms of cellular crosstalk is necessary to better understand angiogenesis in general. Moreover, the refinement and implementation of microenvironment monitoring technologies are vital in ensuring proper vascular development. Such technologies would enable researchers to closely study the impact of gross- or modulated-release of growth factors on the delicate balance required for vascular formation and branching.

7. Acknowledgements

Remo A. Largo and Venkat M. Ramakrishnan contributed equally to the production of this chapter.

8. References

Angiogenesis and Vascularity for Tissue Engineering Applications

factor (VEGF) and basic fibroblast growth factor (bFGF). *Head & face medicine* 6, 29.

Zacchigna, S., Tasciotti, E., Kusmic, C., Arsic, N., Sorace, O., Marini, C., Marzullo, P.,
Pardini, S., Petroni, D., Pattarini, L., Moimas, S., Giacca, M., and Sambuceti, G.
(2007). In vivo imaging shows abnormal function of vascular endothelial growth
factor-induced vasculature. Human gene therapy 18, 515-524.
1. Introduction

Liver replacement is necessary for acute and chronic end stage liver failure and for correction of metabolic disorders. Even a temporary liver support is relevant under specific clinical conditions, giving cell based therapy a great potential. The decision on how much liver tissue should be replaced, depends on the degree of liver dysfunction and the chance of the native liver to recover. To minimize complications it is believed that the maximal percentage of engraftment that can be achieved is in the range of 2-5% of the host hepatocytes, whereas 10% are needed for an adequate support in liver failure. Several questions would still rise such as What is the best location for liver cell therapy? What kind of cells should be used? What strategy to increase cell engraftment should be employed? In this review we will discuss the experience gained with intravascular cell transplantation to the liver and future solutions using new technology for biomaterials production. We will expand on our experience with injectable hydrogel scaffold constructs consisting of PEGylated fibrinogen backbone and diacrylate (PEG-DA). The experience with their use for intravascular injection is still limited.

Hepatocyte transplantation is a promising alternative method for the treatment of acute liver failure and also for the treatment of end stage liver disease. Hepatic cell transplantation can be used to temporarily gain time for acutely failing liver to recover, and to restore liver function in the chronic stage until a liver transplant becomes available. Transplanted hepatocytes can serve for the correction of congenital metabolic defects and for the transfer of genes by ex vivo gene therapy. The techniques used for cell transplantation may be implemented for other kinds of cells for therapy, including stem cells and immortalized-hepatocyte- cell lines. Other advantages of cell therapy over whole organ transplantation include the option to perform multiple hepatocyte transplantations in the same patient, and several patients could potentially be treated from one donor at a cost believed to be one tenth that of orthotopic liver transplantation. Studies have been undertaken to improve the methods related to hepatocyte transplantation, which include hepatocyte isolation from donor livers, cell culture propagation of the hepatocytes, hepatocyte preservation, and genetic modification of the hepatocytes to provide liver-specific functions and longevity. In humans, parenchymal hepatocytes isolated from donor livers remain the best cell source for transplantation, and other cell sources, including stem cells, are at the preclinical and early
clinical stages (Puppi et al. 2011). Major problems do not allow this method to be practical and these include the shortage of organs for cell recruitment and limitations in cell preservation. Moreover technical issues still exist. In rodents old reports suggested that transplanted cells into a normal host with normal liver architecture can integrate into the host liver and function for the long run but this was not proven to be the case (Ponder et al. 1991). New problems appeared when human studies were initiated, such as poor initial and long term engraftment and function. It was agreed in a recent consensus, that to obtain sufficient levels of repopulation of liver with donor cells in patients with metabolic liver disease, some form of liver preconditioning would be required to enhance the engraftment proliferation of donor cells (Puppi et al. 2011). Therefore the switch from the animal model to human studies in the set up of acute hepatic failure is not direct and the amount of cells to be transplanted based on animal studies is probably irrelevant to humans. Moreover, the time needed to reverse a failing human liver which is in the range of 3-6 months would be only a few days in the rodent model making issues of cell engraftment and long term function again irrelevant. What seems now to be the right volume of cells (2-5% of the hepatocytes), to be transplanted into the portal vein in the situation of acute hepatic failure in humans, can be later proven to be insufficient (Fisher and Strom. 2006).

2. Which cell to transplant?

The technique of cell transplantation in contrast to whole organ transplantation allows selecting the proper cells for transplantation as discussed in a recent review (Piscaglia et al. 2010). For the purpose of treating the acutely failing organ adult parenchymal cells will be most suitable. These can be harvested from livers denied for transplantation or from non heart beating livers (Hughes et al. 2006; Mitry et al. 2004). Fetal parenchymal cells may be preferred due to their growth potential (Weber et al. 2010). Both sources of cells are of course limited. Harvesting cryopreserved cells may allow using cells when no immediate donor is available (Terry et al. 2007). The use of stem cells from embryonic source or from induced pluripotent stem cells as a source for hepatocytes is still remote from applicability. It may take long periods to expand and differentiate in culture, and the risk of tumor development always exists (Piscaglia et al. 2010). Xenotransplantation is also not applicable even though some experience was gained using porcine hepatocytes on a bioartificial liver device (Soto-Gutierrez et al. 2006). The fear of transferring infection always exists even though the immune response to transplanted cells seems lesser than to a whole organ (Rhim et al. 1994).

2.1 Where to transplant

The liver naturally is the ideal target organ for cell transplantation, in terms of the unique hepatic organization, interactions with non-parenchymal liver cells and biliary drainage. The spleen is also a viable target tissue for transplantation of hepatocytes since it offers the ability to form differentiated chord structures and reform nearly normal hepatic architectures (Mito et al. 1979). Hepatocytes transplanted to the spleen are responsive to liver regeneration stimuli after partial heptectomy (Aoki et al. 2005). However, the infusion of cells into the portal system by the intra splenic route may be associated with portal vein thrombosis, liver necrosis, hemorrhage and portal and pulmonary hypertension. For
transplanted hepatocytes to engraft into the host liver and remain functionally viable over
the long term, the most important outcome for these cells is to translocate from the portal
pedicle into the liver microenvironment, as described by several groups (Ponder et al. 1991;
Gupta et al. 1999). Another important limiting factor in utilizing either the intraportal or
intrasplenic approach is the number of viable cells that can be engrafted without causing
complications. It is believed that the maximal percentage of engraftment that can be
achieved is in the range of 2-5% of the host hepatocytes whereas 10% are needed for an
adequate support in liver failure (Sohlenius-Sternbeck. 2006; Asonuma et al. 1992). The first
report on the intrasplenic transplantation via the intrasplenic arterial route was reported on
patients with liver failure awaiting liver transplantation (Strom et al. 1999). Despite these
complications and limitations, clinical trials of hepatocyte transplantation have been
performed without causing any reported fatalities. The peritoneal cavity offers a large space
for hepatocyte engraftment, and contact with portal flow but the peritoneal surface does not
support long-term attachment and survival of liver cells. Attachment to collagen-coated
beads or microencapsulation allowed for only minimal improvement (Selden et al. 2003;
Baldini et al. 2008). Co transplantation with non parenchymal cells showed some promise
yet, hepatocytes transplanted to the peritoneum or dorsal fat pad do not express genes as
those transplanted in the liver (Gupta et al. 1994; Selden et al. 1995). To overcome the
problems of intraportal transplantation in the advanced cirrhotic liver with portal
hypertension, transplantation into an extrahepatic site is necessary. A strategy that allow
repeated extrahepatic infusion of hepatocytes was tried, using a non-immunogenic self-
assembling peptide nanofiber. Developed as a three-dimensional scaffold and combined
with growth factors, injected into the muscle of small animals, it resulted in improved
hepatocytes function, but applicability to humans seems remote (Navarro-Alvarez et al.
2010).

2.2 The microenvironment
Hepatocytes are the major cellular component of a bioartificial liver support system.
Although they can elicit multiple functions by themselves, they depend on the cellular
network of the non-parenchymal cells. The latter are major regulators of hepatocyte
intermediary metabolism, growth and response to injury. Kupffer cells interact with
hepatocytes to produce the acute-phase response, i.e., synthesis of C-reactive protein and
alpha2-macroglobulin by IL-6. In –vitro, when Kupffer cells and hepatocytes are co-
cultured, the production of Nitric Oxide is enhanced (Billiar et al. 1990). Hepatocytes
interact with hepatic stellate cells (fat storing cells, Ito cells, lipocytes) for the production of
cellular matrix in vitro. Hepatic stellate cells proliferate, transform into myofibroblast like
cells (“activated” hepatic stellate cells) and synthesize large amounts of extracellular matrix
components (Collagens, fibronectin, tenascin, undulin, laminin and proteoglycans).
Interaction with hepatocytes is mostly important for tissue remodeling. Myofibroblast like
cells participate in the recruitment, activation and migration of inflammatory cells at sites of
liver injury and play a role in regulating hepatic microcirculation. The endothelial cells that
divide the blood vessels and the space of Disse, have an important function in cytokine
production and the synthesis of other molecules that support the microvasculature and
microcirculation. The vascular growth and remodeling is very much dependent on growth
factors and extracellular matrix components. A beneficial effect of co-transplantation with
non parenchymal cell has been shown before (Selden et al. 1995). When hepatocytes formed spheroids they kept their function within the matrices for a longer period of time (Lin and Bissell. 1993; Sakai et al. 2010). A recent paper described the beneficial effect for co-transplantation in the peritoneum and the importance of spheroids structure is also stressed (Selden et al. 2003; Hamazaki et al. 2002; Torok et al. 2011). Bioartificial liver support systems incorporating nonparenchymal cells obtained better results in terms of both survival and function of hepatocytes. A method to prepare a biomatrix by a novel, four-step perfusion decellularization protocol using conditions designed to keep all collagen types insoluble, for repopulation, was reported recently (Wang et al. 2011). The various growth factors attached to the extra cellular matrix allowed for better differentiation of stem cells that repopulated the natural bioscaffold.

3. Major growth factors involved in liver growth, regeneration and angiogenesis

The knowledge obtained to date on liver cell growth and development during regeneration is very applicable to the development of liver tissue bioengineering for therapeutic strategies. Liver regeneration after partial heptatectomy is one of the most studied models for tissue regeneration medicine (Michalopoulos. 2010). We have learned that hepatocytes growth factor (HGF), epidermal growth factor (EGF), transforming growth factor α (TGFα) and TNFα/IL6 system are the most potent mitogens in vivo (Nakamura et al. 1987; Michalopoulos. 1990). Mainly nonparenchymal liver cells, such as hepatic stellate cells, and endothelial cells produce HGF (Schirmacher et al. 1992). During liver regeneration TGFα is secreted by both parenchymal and non-parenchymal liver cells. TNFα and IL-6 family of cytokines were shown to have an important role in the regenerating liver as shown in knock out mice (Cressman et al. 1996). The proliferative and anti-apoptotic effect of these cytokines takes place only under special conditions such as those existing after partial heptatectomy (Streetz et al. 2000). Major inhibitors such as TGF beta, activin, p21 and p53, help regulate the regeneration process.

Endothelial GFs: fibroblast GF (FGF) and vascular endothelial GF (VEGF) participate in liver regeneration (Assy et al. 1999). FGF is a potent endothelial GF and a primary liver mitogen. In its acidic form, aFGF makes hepatocytes more responsive to EGF and TGFα. The basic form is mitogenic to rat hepatocytes in vivo (Baruch et al. 1991; Baruch et al. 1995). bFGF, attached to macroaggregates, enhanced the engraftment of transplanted hepatocytes, by improving vascularization (Perets et al. 2003). FGF is mostly important also for the differentiation of stem cells into definitive endoderm (Kubo et al. 2004). VEGF has a wide range of activities; it increases the endothelial cells’ permeability, facilitates monocytes penetration, and enhances synthesis of plasminogen activator and plasminogen activator inhibitor in endothelial cells. VEGF has in addition a vasodilatatory effect mediated by nitric oxide. In the liver, receptors are found on endothelial cells and VEGF can be found in a small quantity within liver cells. It was reported that VEGF is released by both host and transplanted hepatocytes during cell entry into the liver plate (Slehiia and Gupta. 1998). VEGF is secreted by replicating hepatocytes induce sinusoidal endothelial cell proliferation during regeneration after partial heptatectomy in rats. vWF translocates to sinusoidal endothelial cells during liver regeneration, a change that may have an important role in tissue remodeling during liver regeneration (Baruch et al. 2002).
4. Intravascular cell based therapy and implantable constructs

The most frequently applied hepatocyte transplantation method in humans is the injection of hepatocyte solution into the portal vein. This method, aimed to allow engraftment of hepatocytes within a defected liver, were used by Fox for the first time to treat a girl with Crigler Najar syndrome (Fox et al. 1998; Chowdhury et al. 1991). This method has the problems of insufficient cell survival and engraftment (Chowdhury et al. 1991; Grossman et al. 1995; Raper et al. 1996). Studies concerning cell injection into the spleen showed rapid translocation of transplanted cell through the spleen into the liver (Gupta et al. 1997). By using radio labeled cells it was demonstrated that cells were largely entrapped within the liver vascular bed and not entered the systemic circulation in normal animals (Gupta et al. 1994; Ott and et al. 2002). Cell occlusion is due to mechanical mechanism, because the diameter of hepatocytes is 20-40 mm whereas that of the hepatic sinusoids is 6-9mm. The sinusoids can probably dilate up to the size of 40mm. The total volume of extracellular space is believed to be 15% of total liver volume. Due to this size difference, transplanted cells are deposited in the most proximal sinusoids, adjacent to the portal areas of the liver lobule (Gupta. 2002).While the number of cells passing through the sinusoids to the pulmonary circulation is less than 1% in the normal animal, in animals with portal hypertension and portosystemic collaterals even intra splenic injection results in 50% of heptocytes reaching the pulmonary circulation (Gupta et al. 1993). The vast majority of cells are destroyed instantaneously in the pulmonary capillaries possibly due to shear stress and some other mechanisms. These may include apoptosis and destruction by Kupffer cells secondary to possible ischemia reperfusion injury in this system, needing the use of vasodilators (Slehria et al. 2002). The transplanted cells occlude the hepatic sinusoids and the portal vein radicles, and portal hypertension is observed immediately. Interestingly the increased pressure is transient as was studied with albumin macroaggregates (Gupta et al. 1994). It is believed that the most common location for transplanted cells to engraft is the liver sinusoidal bed and manipulation to vasodilate the sinusoidal bed to improve engraftment was tried with some success (Slehria et al. 2002). We believe that once hepatocytes are in the sinusoids they will go all the way through, and those that remain and have the potential to engraft are those stacked in the portal radicles. This explains the very low transplantation efficiency on the one hand but on the other hand target the portal vein radicles as the site needs to be manipulated, rather than the sinusoidal bed. It is this site that probably allow for redistribution of blood after cell transplantation to reduce portal hypertension and to allow for transplanted cell aggregates to be included in the liver tissue. Therefore there is a rational for using angiogenic growth factors to accelerate this process and to allow better cellular engraftment (Shani-Peretz et al. 2005). We have used for this purpose VEGF and later Heparanase that on top of its angiogenic stimulation is capabale to release other growth factors from the injured liver that favor hepatocytes replication (Carmel et al. 2010; Tsiperson et al. 2008).

It is quite clear that isolated cell transplantation by itself would not be enough and cell based strategies for temporary support systems for both extracorporeal and intra corporeal devices need special constructs (Navarro-Alvarez et al. 2010; Allen and Bhatia. 2002b). These devices include hepatocytes or hepatocytes derived cell lines in order to process patient plasma in the case of extracorporeal systems. Implantable tissue engineered constructs have also been developed for the purpose of long-term liver support (Allen and Bhatia. 2002a).
Construction of thicker tissues, was not possible due to limited diffusion of nutrients and oxygen within the engineered cell mass. It is known that cells can only survive within an area close enough to a source of nutrients and oxygen (Folkman and Hochberg, 1973; Rouwkema et al. 2008). Various techniques in polymer biochemistry and scaffold design to mimic the structure of this vascular network in engineered tissues were used. Strategies have included the co-seeding of endothelial cells that spontaneously form capillary-like networks, and the engineering of branching channels to mimic the vascular tree. (Wang et al. 2011; Kaihara et al. 2000). In addition, angiogenesis was induced in within engineered tissues by incorporating angiogenic peptides and growth factors into scaffolds and by engineering cells used in the organ constructs, to express these factors. However, these efforts have fallen short of producing scaffolds that contain a vascular tree with centralized inlet and outlet vessels that are suitable for transplantation and capable of nutrient and gas exchange. (Borselli et al. 2010). Scaffolds were fabricated from synthetic material that allowed micro-patterning of vascular tree-like structures. When growth factors are used alone, they tend to create only a microvasculature consisting of small and fragile capillaries, in a time consuming process, and therefore this technique is only applicable for the engineering of smaller size tissues (Perets et al. 2003).

Development of implantable constructs with vasculature, remains a complicated challenge in terms of finding solutions for, the high metabolic rate of the liver cells, the need for unimpeded transport for large macromolecules and the need for cell-cell interaction (Dixit and Gitnick, 1995). In this respect, adult hepatocytes must interact with the various biomaterials, a process which is poorly understood and one of the key challenges to overcome in this field. Various hepatic tissue engineering approaches have been explored including the attachment of hepatocytes to microcarriers and encapsulated hepatocytes spheroids allowing for immunological protection and cell interaction (Demetriou et al. 1986). Co-transplantation is easier in within microcapsules that also have the advantage of immunological protection. The preferred site so far is the peritoneum that can accommodate large volume (Perets et al. 2003; Ambrosino et al. 2003; Teng et al. 2010; Shi et al. 2009; Mooney et al. 1997). Absorbing cells on biodegradable synthetic scaffolds to allow control over scaffold chemistry, and space for cell interaction and vascular growth was used (Perets et al. 2003; Mooney et al. 1997; Lee et al. 2009). A significant advancement in the field of bioscaffold design has been the utilization of decellularized liver tissue creating a three-dimensional scaffold for tissue engineering strategies (Baptista et al. 2011). This study demonstrated that human liver cells can be seeded through the portal vein of a liver bioscaffold, and can be maintained in a specialized bioreactor with constant culture medium perfusion up to one week. Progressive human liver tissue formation was documented, as well as liver-associated functions. Widespread cell proliferation inside the bioengineered liver tissue with low cell apoptosis was also observed. These studies showed the possibility of seeding these bioscaffolds with liver cells from animals, but the possibility of generating functional human hepatic tissue is still in question.

Cell encapsulation techniques their advantages and disadvantages are reviewed elsewhere (Hernandez et al. 2010). Recently, a biomaterial system developed that takes advantage of the biological properties of natural extracellular matrix proteins combined with precisely controllable properties of synthetic polymers for making scaffolds for tissue engineering (Almany and Seliktar, 2005; Seliktar, 2005). The biosynthetic hybrid biomaterials are ideally suitable for hepatic tissue engineering in that both the structure and function of the
construct can be exactly regulated by the compositional alterations to the biological and synthetic constituents of the material (Dikovsky et al. 2006; Underhill et al. 2007). These hybrids are made from extra cellular matrix proteins such as fibrinogen, collagen and albumin, while the synthetic polymer is made from polyethylene glycol (PEG) (Gonen-Wadmany et al. 2007). The PEG constituent is biocompatible with liver cells and already received FDA approval. The PEGylated protein hydrogels have already been applied successfully in orthopedic applications and their biocompatibility has been established with 5-week implantation studies in rats. An additional advantage of the PEGylated protein approach is that the biomaterials are polymerizable using photo-initiation, which provide the ability to directly inject the biomaterial precursors solution together with hepatic cell suspension into the body and polymerize the construct in situ (Shapira-Schweitzer and Seliktar. 2007). The combination of PEG and extra cellular matrix proteins in a PEGylated protein hydrogel system represents an advanced approach in scaffold design.

These polymers have the advantage of size, shape and cell number control. Taking this advantage we have recently formed microcapsules at the size of 200-600 mm (Fig. 1). This size is injectable through a 25G syringe through the portal vain of rats. The injected microcapsules can protect groups of hepatocytes from shear stress and from passing through the sinusoids. These particles are stacked in the portal radicle allowing eventually for a group of cells to engraft into the host liver (Nayshool et al.).

Fig. 1. HUH7 cells encapsulated in a PEG-Fibrinogen hydrogel scaffold. Radius of microcapsules 100-200 micrometers

In the long struggle against liver failure no one method would be most favorable. The strategy may be to employing different methods in the same individual and this would need
the optimization of each one of them. The intravascular route for encapsulated cells is a promising method, solving the problem of shear stress protection, oxygen and nutrient supply, and allow for planning ahead the cell type mixture for transplantation. Still, portal hypertension remain a problem that would need to be resolved.

Table 1. The liver as the target

<table>
<thead>
<tr>
<th>Disadvantages</th>
<th>Advantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portal hypertension</td>
<td>Natural microenvironment</td>
</tr>
<tr>
<td>Portal vein thrombosis</td>
<td>Linkage to bile system</td>
</tr>
<tr>
<td>Distorted tissue in acute failure and cirrhosis</td>
<td>Relative large vascular space</td>
</tr>
<tr>
<td>Cells bypass to the lungs</td>
<td>Favorable regenerative tissue</td>
</tr>
<tr>
<td>Insufficient space</td>
<td></td>
</tr>
<tr>
<td>Coagulation defects</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2. HUH7 cells encapsulated in a PEG-Fibrinogen hydrogel scaffold in a portal radicle (H&E X40)
1. Use of Vasodilators.
2. Combined use of angiogenic and proliferative growth factors.
3. Control for the size of particles.
4. Co-transplantation with non parenchymal cells.
5. Liver preconditioning (partial hepatectomy, portal vein thrombosis, irradiation).
6. Control the size of cell constructs

Table 2. Strategies to improve cell engraftment within the liver

5. References

[45] Nayshool O, Carmel J, Saadi T, Arish A, Mironi-Harpaz I, Seliktar D and Baruch Y. In Vitro comparison between different biosynthetic hydrogel scaffolds, for liver tissue regeneration therapy. Poster presented at: Israeli Society for the Study of Liver Disease (IASLD) on annual meeting; 2011 Jan 26-29; Eilat, Israel.

Nano-Coating with Titanium of Glutaraldehyde-Fixed Heart Valve Prostheses Enables a Reduced Immune Response and a Self-Seeding Within Circulation

Norbert W. Guldner¹, Hangörg Zimmermann² and Hans- H. Sievers¹
¹Clinic of Cardiac Surgery, University of Lübeck,
²Pfm Titan GmbH Nürnberg
Germany

1. Introduction
Glutaraldehyd-fixed heart valve prostheses with long durability and function are desirable as a treatment option of heart valve disease. They do not require chronic anticoagulation therapy, however break down quickly in young patients (<5 years) but last for > 15 years in patients older than 70 years. It is generally accepted that the break down of bioprosthetic heart valves is due to calcification occurring because of immunologic and chemical processes.
Thus, new nano-technological methods in combination with chemical and biochemical procedures concerning detoxification and titanization of glutardialdehyde- fixed collagen scaffolds are applied on glutardialdehyde fixed pericardial samples. Nano-technology with titanium using a plasma application under high alternating current, developed elsewhere (GfE Nürnberg, Germany, patent number EP 0 897 997 A1) might decrease the immune response caused by coating and improve endothelialization by detoxification and the biocompatibility of titanium. A plasma-activated surface of collagen allows a titanization under room temperature described later on. Immune response with secondary dystrophic calcification may be why glutaraldehyde fixed xenograft valves fail, especially in young patients. Hypothesis is, detoxification and titanization may reduce immunologic reactions and enable an endothelialization.

2. Detoxification and titanium coating of glutaraldehyde-fixed pericardium
Free aldehyde-groups of glutaraldehyde-fixed pericardium are responsible for its toxicity, which prevents an endothelialization.

2.1 Detoxification
Platelets of glutaraldehyde- fixed pericardium were treated differently for detoxification. Some were detoxified chemically by incubation with citric acid (CA) of 10%. Others were detoxified enzymatically by aldehyde dehydrogenase and received nano-technological
methods using plasma activation either solely or combined with a treatment of organic bound titanium.

2.2 Determination of free aldehyde groups
A method for the determination of the amount of glutaraldehyde in specimens of glutaraldehyde fixed pericardium has been developed using aldehyde dehydrogenase (ALDH). (Guldner et al. 2009). In presence of ALDH, aldehydes are oxidized to carbon acids while a reduction equivalent (here: NAD+) is reduced. Aldehyde dehydrogenases have broad substrate specificity. Thus, they process glutaraldehyde as well as other aldehydes

$$\text{Acetaldehyde} + \text{NAD}^+ \rightarrow \text{Acetic acid} + \text{NADH}$$

The determination of aldehydes with the ALDH method was performed photometrically. The increase of optical density (extension) by the reduced NADH could be measured at a wave length of 340nm. The amount of NADH being proportional to the original amount of aldehyde, statements on the remaining toxicity of the fixed pericardium could be made. Optimal duration for incubation was inquired.

Enzyme, NAD+ (tablets) and buffer solution from a commercially available kit, originally developed to determine acetaldehyde concentrations in a variety of materials, were used (Acetaldehyde, Enzymatic BioAnalysis; R-Biopharm, Darmstadt, Germany). Platelets of pericardium were incubated in a 24 well plate with 1ml enzyme solution each for 24 hours. Thereafter 100µl from each well were examined photometrically. Native pericardium served as control.

2.3 Chemical Vapor Deposition (CVD) by a titanium containing precursor
Before physical titanization of cardiovascular scaffolds by plasma activated chemical gas deposition (PACVD) it is necessary to extract its water completely, which is feasible in a vacuum by a slow drying process. PACVD is a coating technology (GfE Nürnberg, Germany, patent number EP 0 897 997 A1) where the so called precursor (Tetrakisdimethylamidotitan, Ti [N (CH$_3$)$_2$]$_4$) is transferred into the gas phase and brought into the reactor by a carrier gas (nitrogen). The precursor or parts of the precursor react with the substrate creating a resistant layer. Physical plasma however is able to supply the substrate with high energy while the temperature during deposition can kept low. Within this non isotherm plasma with solely high electron temperature and room temperature of the neutrons and ions the electrons can follow a quickly changing electrical field with typical values of a radio frequency (40kHz) low pressure plasma as described elsewhere (Grill, 1994; Sivaram S.1995). Thickness of the titanium containing deposit is depend on sputtering time. After PACVD the dehydrated implants came to the same shape in physiological saline solution as before titanization.
Plasma- Titanium Treatment for Collagen Coating at 35°C

Fig. 1. Scheme of Chemical Vapor Deposition (CVD) with the gasiform titanium bounded organic molecule as precursor at 35°C. In a vacuum chamber with energy supply by high alternative current, the precursor is deconstructed and precipitated on the plasma activated collagen surface (Plasma Activated Chemical Vapor Deposition, PACVD) and electron pair bounded to collagen molecules.

2.4 Examination of the titanium coat

Deposits composition and binding energy of titanium, carbon, oxygen and nitrogen atoms could become analyzed by X-ray Photoelectron Spectroscopy (XPS). X-ray activated atoms emit electrons from inner electron layers (photo effect) with a distinct kinetic energy being specific for each element. The kinetic energy of the emitted electron diagnoses the element and therefore the composition of elements within the titanic layer. The chemical binding in which an element is, influences the energy levels of its inner electrons. A more electronegative partner binds its electrons tighter on its inner electron layers. That influences the kinetic energy on the emitted photoelectrons during X-ray application. These values in kinetic energy of the emitted photoelectrons enable to determine the chemical binding energy between elements during XPS and so in titanic layers as for oxygen, titanium, nitrogen and carbon (Dag, 1997; Moulderm, 1995). The limited intrinsic depth for XPS of about 1 nm requires a removal of substrate in layers using argon ions. The XPS analysis showed a maximal surface atom fraction of 21.1±3.8% titanium atoms within a removal time of about 300 seconds, which translates to a titanium thickness of 30 nm. The presence of oxygen indicated that titanium had been changed by subsequent oxidation into titanium dioxide, with an electron-binding energy for titanium of 463 eV. Two peaks for titanium represented titanium bound carbon and titanium bound with oxygen as titanium oxide. These analyses show an extremely tight electron binding of the titan precursor fragments to collagen. Titanium is non removable bounded to collagen in an extremely thin coating onto collagen with a diameter of about 30 nano-meters.
3. Immunology of glutaraldehyde-fixed bovine pericardium

Glutaraldehyde-fixed heart valve prostheses calcify and fail in a time period lesser than 12 years (Williams et. al., 1982). Some investigators believe that the GA-process leads to calcification and failure of the valves due to chemical processes (Simionescu, 2004). Others are convinced the main break down of GA-fixed valves is caused by an immunologic response (Rocchini et. al., 1981; Williams et.al., 1982; Ueyama et.al, 2002; Rizwan et.al., 2006). They showed in a young animal model that GA-fixed xenograft valves undergo rejection and that inflammation is correlated to calcification (Rizwan et.al., 2006).

Young patients with a strong immune system show a valve break down very quickly (<5) years (Rocchini et. al., 1981; Williams et.al., 1982;). In patients > 70 years with a minor immune response bio-prosthetic valves function well > 10 years (Ueyama et.al, 2002). Xenogenic organ transplantation arises a very aggressive form of humoral and cellular immune rejection with tissue infiltrations by lymphocytes and monocytes (Fischbein et.al., 2000). Whereas the immunologic lymphocytes and monocytes response could become
decreased by de-cellularization or GA-fixation the granulocyte recruitments in de-cellularized xenografts and GA-fixed heart valves were not influenced at all. The residual immuno-stimulatory activity of de-cellularized porcine vascular tissue towards polymorphonuclear (PMN) cells resp. granulocyte recruitments, observed in vitro (Fischbein et. al., 2000; Juthier et.al; 2006), correlates with in vivo findings with de-cellularized human and porcine heart valves (Friedhelm et.al; 2005; Rieder et.al.; 2006; Bastian et.al., 2008). For the evaluation of the immunologic activity of GA- fixed pericardium in vitro blood sampling, plasma preparation and isolation of PMNs are necessary.

3.1 Blood sampling, preparation of plasma, and isolation of PMN
Venous blood was collected from 3 healthy adult volunteers who were not using any medications and who gave informed consent (approved by the ethical committee, Medical University of Vienna). Whole blood was anti-coagulated with 5 IU/ml heparin and centrifuged at 2000 x g for 15 min to obtain plasma. Human PMN were retrieved from EDTA-anticoagulated venous blood by lysing 1ml blood with 5ml 0.9% (w/v) ammonium chloride for 15 min at 4°C, followed by centrifugation at 160 x g and 4°C for 10 min (Nilsson, 2001). The supernatant was discarded and the cell pellet washed three times with PBS. Cells were subsequently re-suspended in RPMI 1640 medium (BioWhittaker™, Verbiers, Belgium) to a final concentration of 5000/µl and immediately used for the experiments. The cell suspensions comprised 84.4±3.1% PMN, 11.6±2.7% lymphocytes, and 3.5±1.6% monocytes. The platelet contamination was less than 0.1 platelet per PMN. These procedures were necessary for the quantification of IC3b deposits on the blood contacting surface of the GA-fixed pericardium and the granulocyte-matrix adhesion experiments.

3.2 IC3b- deposits
IgG deposits (IC3b) were visualized by an immune staining as described elsewhere (Bastian et. al.; 2008) and shown in figure 4. They are documented as coloured pixels (red). Pixels are counted electronically.

IC3b- deposits within the control group with GA-fixed pericardium were regarded as 100%; in the Titanized group IC3b deposits were evaluated as 34%. The authors opinion is, that these preliminary results can become further optimised (further decrease of immunologic response) by an advanced procedure of pericard drying and plasma deposition based on titanium.

3.3 Granulocyte/matrix adhesion experiments
Platelets of titanium coated, glutaraldehyde-fixed bovine pericardium were brought into an immunologic test setting inducing a complement-mediated granulocyte adhesion and activation as described elsewhere (Bastian et. al.; 2008).

Plasma used for pre-treating the tissue samples and granulocytes was obtained from the same donor during each experiment. Tissue specimens (0.5 x 0.5 cm) were either incubated with 20% of heparinized autologous plasma (diluted in PBS containing 0.15 mmol/l Ca²⁺ and 0.5 mmol/l Mg²⁺) on a rocking platform for 5h each at 37°C, or left untreated. Cryostat sections were incubated with 5,000 PMN/µl for 15 minutes in a humidified incubation chamber at room temperature (RT). This incubation time was chosen since it proved to be optimal for demonstrating PMN adhesion in vitro.

PMN quantification was performed by counting the leucocytes (including 86% PMNs) near the blood contacting surface of the pericard within an areas of 3x3 mm. Five samples from each histologic slice were taken for the evaluation of PMNs.
Nano-coating with titanium remarkably reduced the early immunologic response to GA fixed bovine pericardium in vitro. Thus, the titanium coat is protective against iC3b and immune based PMN attraction in contact with human blood.

Fig. 3. PNM count in front of the GA-fixed pericard slices were regarded as 100% (top) GA-fixed and titanium coated pericardium however reduced the attraction of PNM to 6.0% (bottom) as an expression for an extremely reduced immune response

4. Endothelialization

Glutardialdehyde’s toxicity however prevents biological coating. Detoxification of glutaraldehyde-fixed scaffolds by amino acids (Fischlein et.al, 1994) and by citric acids (Lehner et.al., 1997; Gulbins et.al., 2003) in vitro were successfully applied for partial detoxification but endothelialization was only possible by pre-seeding with fibroblasts. Such pre-seeded layers on porcine heart valves were stable in a sheep model (Gulbins et.al., 2003,2006). Due to the fibroblasts however, the valves showed a thickening of the leaflets resulting in an impairment of function.
Recent investigations developed detoxification strategies and applied nano-technological methods such as ultrathin titanium surface coating on glutaraldehyde fixed bovine
pericardium as the base material for prosthetic heart valves (Guldner et al., 2009). Titanization by chemical vapor deposition was feasible at temperatures between 30-35°C (Grill et al., 1994; Silvaram et al., 1995; Dag, 1995). For endothelial cell adhesion on a titanium surface endothelial cell cultures were performed.

Fig. 4. Immune staining of iC3b deposits on GA-fixed pericardium (top) was control and defined as 100% pixels, titanium coated pericardium platelets showed a count of a decreased number of pixels to 34% (bottom) as an expression of an impressive lesser immune response as to the uncoated GA-fixed pericardium

4.1 Cell culture
Endothelial cells have been isolated from human saphena veins, gained from coronary bypass surgery. Ethical approval was obtained from the Ethical Commission on Research on Humans of the University of Schleswig Holstein, Campus Lübeck, Germany (registration
Patients had been informed before surgery that parts of their veins were to be used for research purposes. The vein pieces were cannulated, rinsed with cell medium then filled with 0.5% dispase and incubated for 20 minutes at 37°C and 5% CO₂. Then solution was then centrifugated at 1200 upm for 5 minutes, the cell pellet was re-suspended in endothelial growth medium (EGM-2; Cambrex, Walkersville, US) and plated on cell culture flasks. For passaging, endothelial cells were trypsinized after reaching confluence, centrifuged at 1200 upm for 5 minutes, then re-suspended in endothelial cell medium and plated out again. Cell counting has been performed by incubating 20µl of the cell suspension with an equal amount of trypan-blue and then counting using a Neubauer chamber.

Pre-treated platelets of glutardialdehyde fixed pericardium were examined by scanning electron microscopy (SEM) after 48 hours of incubation with human endothelial cells. SEM showed malformed non confluent endothelial cells on Citric Acid (10%) only treated pericardium (Figure 5a, n=5). In contrast to that, a completely confluent cell layer of regular human endothelial cells could be observed on pericardial surfaces treated with a combination of Citric Acid (10%) and plasma-titan method (n=5) (Figure 5). Toxicity of pericardium was reduced by combination of procedures using ALDH and plasma-titanium coating (n=12) to 17.3± 2.1% (p≤0.01).

Fig. 5. Scanning electron microscopy of human endothelial cells on glutardialdehyde fixed bovine pericardium shows sporatic cell cadavers (a), treated with citric acid (10%) demonstrates malformed endothelial cells (b) detoxified with citric acid (10%) and ALDH results in non confluent endothelial layers (c) the nano-technological promoted procedure with a detoxification and a titan plasma administration enabled a confluent layer of endothelial cells (d)
Several platelets of pericardium differently detoxified were examined by scanning electron microscopy (SEM) after being seeded in vitro with human endothelial cells. Of each specimen, 10 visual fields were evaluated under 1000x magnification. Both cell morphology and confluence of the cell layer were assessed semi-quantitatively by different examiners.

4.2 Cell adhesion under flow conditions
A flow chamber made of V4A steel and glass was able to incorporate in its bottom six detoxified and endothelialized platelets within V4A steel rings. It was constructed such that no significant turbulences happened and that the laminar shear stress of 30 dyn/cm² and flow of 5 L/min was similar to the intra-aortic fluid dynamic.

Adhesion of human endothelial cells on glutaraldehyde fixed pericardial platelets treated by CA 10%, ALDH and a titanium coating was expressed by the vitality of the remaining cells after a flow of 5L/min for 24 hours within a flow chamber.

Vitality of the endothelial cells was measured by the extinction of the MTS-test of 72% (n=6) after a pre-seeding of 15 min and 81% (n=6) after pre-seeding of 60 min (Fig.6).

![Graph](image_url)

Fig. 6. Extinction of MTS-test for titanium treated (n=6) endothelialized glutaraldehyde-fixed bovine pericardium platelets after in a flow channel of 5L/min. Adhesion of human endothelial cells is 72% after a pre-seeding of 15 min and 81% after pre-seeding of 60 min.

This study provides evidence that titanium coating in combination with a CA10% and ALDH treatment removed most of the free aldehyde ligands of glutardialdehyde fixed...
pericardium in-vitro and enabled a living and confluent cell layer of human endothelial cells with a high adhesion capacity. This study gave evidence that titanium coating applied to a porcine heart valve may enable a self-seeding with cells within circulation.

4.3 The first self-endothelialized titanium coated glutaraldehyde-fixed heart valve prosthesis within systemic circulation

Implantation of a pre-seeded aortic valve in the aorta descendens position in a sheep model without extra-corporal circulation was already described before (Gulbins et.al., 2006). We used a male Bore goat with a weight of 83 kilograms (ethical accreditation of the Ethics Committees for Animals in Kiel, V 362-72241.122-6) to create a muscular blood pump in aorta descendens position (Fig.7a). We integrated two glutaraldehyde-fixed, titanium coated and detoxified porcine heart valves into the inflow and outflow part of the pumping chamber of this muscular blood pump, the Biomechanical Heart (Guldner et.al., 2001). This skeletal muscle ventricle pumped with a frequency of 20 beats per minute. After 6 months of pumping the valves were removed from the pumping chamber for histological analysis. Valve leaflets from the two valves were imbedded in paraffin, cut into sections of 4 µm and treated with a hematoxilin-eosin staining. Other sections were treated using polyclonal antibodies against factor VIII (Dako, Hamburg, Germany). After incubation with primary antibody, an anti-rabbit IgG antibody was applied which was conjugated with alkaline phosphatase (SIGMA, Steinheim, Germany). Photographic documentation was performed by using a magnification of 20X.

Fig. 7a. Valve’s topography within the inflow and outflow part of the pumping chamber of a Biomechanical Heart, a muscular blood pump within aorto-aortic position

Porcine titanized and detoxified aortic valves, having been implanted heterotopic within the systemic circulation of a goat for 6 months, were macroscopically well and showed a normal opening and closure behaviour. Cross-section of a valve leaflet demonstrated a cell-seeding of its blood contacting surface (HE-staining magnification 20X). Immunhistochemic staining against factor VIII proved a complete endothelialization of the total blood contacting surface, labelled with alkaline phosphatase and visualized with immunefluorescense (7b, bottom).
5. Conclusions

Tissue engineering of heart valves is considered to be a hopeful concept to generate improved substitute bioprostheses. However, because there is yet no realizable blueprint to construct semilunar valves (Sievers, 2007) our aim was to refine conventional, proven bioprostheses using chemical agents as citric acid and aldehyde dehydrogenase (ALDH) for detoxification and innovative nanotechnologies such as plasma deposition with the most biocompatible titanium coating. These procedures have shown to reduce the immune
response to the glutardialdehyde-based cross-linked collagen, probably the main reason why GA-fixed bioprostheses calcify and fail and enable the valve-protecting endothelialization in vitro under static and flow conditions.

Furthermore, this new method combining biochemical methods of detoxification with nanotechnology including a titanium coating created the first self-seeded glutaraldehyde-fixed biologic heart valve within circulation under arterial pressure. This technology might open a new field of research for developing new heart valves with improved durability and function. In future, big animal studies are necessary to approve this procedure mainly to increase durability and function in biologic glutaraldehyde-fixed heart valves over several decades and avoid re-operations caused by valve degeneration.

6. Acknowledgment

The authors thank for the support from M. Malaika, B. Girndt from Pfm Titan GmbH Nürnberg titanizing the GA-fixed pericardium and G. Weigl and F. Bastian of the Clinic of Cardiac Surgery University of Vienna (AKH) performing immune histologic investigations.

7. References

Nano-Coating with Titanium of Glutaraldehyde-Fixed Heart Valve Prostheses Enables a Reduced Immune Response and a Self-Seeding within Circulation

Rizwan A. Manji, MD, PhD; Lin F. Zhu, MD; Nimrit K. Nijjar; David C. Rayner, MD; Greg S. Korbutt, PhD; Thomas A. Churchill, PhD; Ray V. Rajotte, PhD; Arvind Koshal, MD; David B. Ross, MD(2006). Glutaraldehyde-Fixed Bioprosthetic Heart Valve Conduits Calcify and Fail From Xenograft Rejection Circulation. 114:318-327.

1. Introduction

Proper vascular network structure is essential for normal tissue function. The vasculature provides oxygen, nutrients and immune cells, as well as removes tissue waste and by-products. (Jain 2003) In tissue engineering and regenerative medicine, the existence of functional blood vessels is critical to the survival of the newly generated tissue. Current strategies for promoting new blood vessel formation, or neovascularization, have mostly focused on angiogenesis, which is the formation of new capillaries from pre-existing vessels by sprouting of endothelial cells (ECs). (Carmeliet 2003) Another mechanism of neovascularization, vasculogenesis, which is the \textit{in situ} assembly of endothelial progenitors into capillaries, has also been explored as a method for stimulating new vessel formation. Genes or proteins of angiogenic factors have been delivered systematically or directly to a target tissue to promote neovascularization via either angiogenesis or vasculogenesis. For example, proteins from the vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) families delivered by various methods have been investigated extensively for enhancing neovascularization. (Brey \textit{et al.}, 2005; Brey & McIntire, 2008) While the delivery of angiogenic factors has been successful in promoting new capillary formation, the structure of the newly formed vessels is often non-ideal. The vessels can be immature, with small diameters and lack of some essential cellular and extracellular components required for proper function. Immature vascular structure may result in poor blood perfusion and possibly vessel regression upon a decrease in the vascular stimulus. (Benjamin \textit{et al.}, 1999) In addition, the formation of small capillaries alone is not likely to be sufficient for vascularization of large, complex tissues, which are often needed for tissue engineering. Therefore, the goal of neovascularization in engineered tissue should be focused not only on the initial assembly of capillaries via angiogenesis or vasculogenesis, but also the expansion and stabilization of new vessels, which means the formation of mature, long-lasting vessels with dimensions that meet the requirement of high conductance blood flow. (Carmeliet & Conway, 2001) In this chapter, we will discuss current status in the generation of stable, long-lasting vascular networks in tissue engineering and regenerative medicine, identifying recent advances and limitations yet to be overcome.

2. Angiogenesis stabilization: basic mechanisms

The process of angiogenesis includes four stages: (a) initiation, in which a certain angiogenic stimulus increases vessel permeability and protein leakage; (b) progression, characterized
by the production of proteolytic enzymes that degrade the basement membrane (BM) lining endothelial cells (ECs) and surrounding extracellular matrix (ECM) to allow EC invasion and migration; (c) differentiation, which involves the assembly of ECs into a network with a luminal structure; and (d) stabilization and maturation, where mural cells (pericytes and vascular smooth muscle cells) are recruited and ECs deposit new BM. (Bussolino et al., 1997) It is important to note that the MCs may be recruited after initial network function or simultaneous with vessel assembly. (Brey et al., 2004) Numerous cellular and molecular factors are involved in the regulation of this process. Failure in this regulation could result in excessive vessel generation or premature regression, which is seen in many pathological conditions. In the following sections we will describe the basic components of the vessel and their role in vessel stability.

2.1 Cells

The walls of stable blood vessels are composed of two distinct cell types: ECs and mural cells (MCs). (Figure 1) While ECs form the inner lining of vascular tubes, MCs associate with and coat the outside of the endothelial tube. (Gaengel et al., 2008) In the case of capillaries the MCs, or pericytes, are intermittently present on the surface. For larger vessels the MCs, or vascular smooth muscle cells (VSMCs), coat the entire vessel surface often in multiple layers. Interactions between the ECs and MCs play a critical role in the regulation of vascular formation, stabilization, remodeling, and function. Abnormal interactions between the two cell types are implicated in a number of pathological conditions, including tumor angiogenesis, diabetic microangiopathy, ectopic tissue calcification, and stroke and dementia syndrome. (Armulik et al., 2005; Carmeliet 2003)

![Fig. 1. Process of blood vessel stabilization. Endothelial cells (EC) in immature vessels secrete signals that stimulate the migration and proliferation of mural cells (MC). ECs also secrete a thin layer of matrix, known as the basement membrane (BM) that lines the vessels](image)

Junctional structures, including adherent junctions and tight junctions, are present between ECs and provide the endothelium with integrity, mechanical strength and tightness, and a barrier to molecular transport. (Carmeliet 2003) During vascular sprouting, junctions are partially disorganized to allow cell migration and proliferation, and to increase vessel permeability. During vessel stabilization, junctional integrity is re-established and permeability is tightly controlled. (Dejana, 2004) As vessels sprout and migrate, they will
form branches. These sprouts then inosculate with other vessels to form complex networks. Typically, a high vessel density is formed in response to the initial vascular stimuli. This vasculature must be remodeled for tissue-specific transport and function. Apoptosis of ECs are involved at this later stage to remove excessive vessels. (Darland & D'Amore, 2001) However, excessive apoptosis may result in premature vessel regression. Growth factors, which are essential for angiogenesis, not only stimulate EC proliferation and migration but also inhibit EC apoptosis. (Dimmeler & Zeiher, 2000) Thus, the prevention of EC apoptosis may improve the survival and durability of blood vessels formed in engineered tissues.

MCs are commonly subdivided into VSMCs, which are associated with arteries and veins forming multiple concentric layers; and pericytes, which are associated with small diameter capillaries. (Gaengel et al., 2009) Intermediate-size vessels, arterioles and venules, have MCs with properties between those of typical VSMCs and pericytes. Since VSMCs and pericytes share some common cellular markers, such as \(\alpha\)-smooth muscle actin (\(\alpha\)-SMA) and desmin, they are believed to represent phenotypic variants of the same lineage, and may function as progenitors for each other depending on external stimuli. (Gerhardt & Betsholtz, 2003)

The presence of MCs on the surface of ECs plays a critical role in vessel stability. Intercellular adhesion between MCs and ECs is mediated by integrin \(\alpha_4\beta_1\), which is expressed by proliferating ECs, and its ligand VCAM-1, which is expressed by proliferating MCs. (Garmy-Susini et al., 2005) Studies have shown that the association of MCs to the newly formed endothelial plexus stabilizes the vasculature, while the disruption of EC-MC associations results in excessive regression of vasculature. (Benjamin et al., 1998) Co-culture of EC with SMC in a 3D in vitro model results in a mature, quiescent EC phenotype with increased number junctional structures and increased resistance to apoptosis. (Korff et al., 2001) However, the presence of MCs in the microvasculature does not always guarantee vessel stability. Vessels with extensive MC can still regress following loss of neovascular stimuli. (Brey et al., 2004) Therefore, some additional signals, such as ECM and soluble growth factors, are also required for vessel stabilization.

2.2 Extracellular components

Extracellular matrices (ECM), including BM (primarily collagen IV and various laminin isoforms) and interstitial matrices (typically collagen I, elastin and fibronectin but depends on the particularly tissue), play important roles in angiogenesis. (Francis et al., 2008) Firstly, the ECM scaffold provides mechanical support for ECs to form channels, preventing vessels from collapsing. In addition, EC adhesion to ECM regulates EC proliferation, migration, and survival, mediated by different signaling pathways. (Davis & Senger, 2005) And finally, the deposition of ECM, particularly BM, which occurs after MC recruitment stabilizes the vessel by decreasing permeability and preventing vessel regression. (Stratman et al., 2009)

The ECM is dynamically regulated during angiogenesis. In the initiation of angiogenesis, ECM is degraded by proteinases, such as matrix metalloproteinases (MMPs). The degradation of ECM not only allows EC migration and proliferation, but also releases soluble growth factors trapped in the matrix. (Ghajar et al., 2008) After lumen formation, MCs are recruited to EC tubes and induce the deposition of new BM as well as the secretion of tissue inhibitor of metalloproteinases (TIMPs), which inhibit MMPs proteolysis. (Stratman
et al., 2009) Dysregulation of ECM, such as glycation of collagen due to diabetes and aging, can slow ECM vessel assembly. (Francis-Sedlak et al., 2010)

2.3 Signaling pathways
The formation of stable vasculature is tightly regulated by the spatial and temporal kinetics of numerous signaling pathways. A stable, operational vascular network results from a balance between signals that favor angiogenesis and vascular stabilization, and those that promote vascular regression. (Bussolino et al., 1997) Signaling pathways affect vascular stabilization presumably by regulating proliferation and apoptosis of ECs and MCs, as well as the deposition and degradation of ECM. (Jain 2003) In this section, we will discuss some of the signaling pathways and their roles in vascular stabilization.

2.3.1 Platelet derived growth factor (PDGF) family
The PDGF family is composed of disulfide-bonded homodimers of four subunits, PDGF-A, PDGF-B, PDGF-C and PDGF-D, as well as the heterodimer PDGF-AB. PDGF isoforms exert their biological effects through the activation of two tyrosine kinase receptors, PDGFR-α and PDGFR-β, which are present on MCs and mesenchymal cells. (Hellberg et al., 2010) Specifically, PDGF-BB, secreted by proliferating ECs during angiogenic sprouting, stimulates the migration and proliferation of MCs, which express PDGFR-β. In addition, PDGF-BB induces the differentiation of mesenchymal cells toward a MC lineage. (Hirschi et al., 1999) Genetic knockout of pdgf-b or pdgfr-β in mice results in MC deficiency, vascular leakage and embryonic lethality (Hellstrom et al., 1999; Lindahl et al., 1997) The more recently described PDGF-C and PDGF-D isoforms are also involved in vessel maturation and stabilization. PDGF-C drives the recruitment and differentiation of MCs resulting in improved BM integrity and a more mature, stable vascular wall with a lower permeability. (di Tomaso et al., 2009) PDGF-D induces macrophage recruitment and vessel stabilization by improving the SMC coating of angiogenic blood vessels and decreases their permeability. (Uutela et al., 2004)

2.3.2 Angiopoietins
The angiopoietin (Ang) family consists of Ang-1, Ang-2, Ang-3 and Ang-4. The angiopoietins are ligands for the Ties, a family of receptors that are expressed within the vascular endothelium. (Yancopoulos et al., 2000) Ang-1 is predominantly expressed by MCs, suggesting a paracrine mode of action; whereas Ang-2 is mostly expressed by ECs, suggesting an autocrine function, although expression in MCs has also been reported. (Gaengel et al., 2009) Ang-3 and Ang-4 are less well understood at this time. Ang-1 stabilizes nascent vessels and make them leak-resistant, presumably by facilitating interactions between ECs and MCs. Genetic deletion of Ang-1 or its receptor Tie2 in mice resulted in defects in vessel remodeling with poor association of ECs with BM, and failure to recruit MCs. (Sato et al., 1995; Suri et al., 1996) Transgenic overexpression of Ang-1 in mice lead to a significant increase in vessel diameter and increased resistance to vessel leakage. The resistance is presumably due to the ability of Ang-1 to maximize interactions between ECs, MCs and BM. (Thurston et al., 1999, 2000) Ang-2, on the other hand, acts as an antagonist of Ang-1, destabilizes vessels and contributes to vessel regression. Transgenic overexpression of Ang-2 disrupts blood vessel formation in the mouse embryo, resulting in
similar effects to Ang-1 or Tie 2 knockouts. (Maisonpierre et al., 1997) Thus, angiopoietins positively or negatively regulate vessel stabilization, however, the detailed mechanism of the signaling pathways are not yet well-described.

2.3.3 Sphingosine-1-Phosphate (S1P)
S1P is a bioactive lipid mediator that is primarily secreted by platelets. It activates a family of G-protein coupled receptors (S1P1 to 5), formerly known as endothelial differentiation gene (Edg)-receptors. (Gaengel et al., 2009) Mice deficient in S1P have severe vascular defects resulting in embryonic lethality, with incomplete coverage of MCs. Mice deficient in S1P1, its receptor, also showed severe defect in vascular maturation, suggesting the role of S1P/S1P1 signaling pathway in promoting vascular stabilization. (Mizugishi et al., 2005) Moreover, knockout of the EC-specific S1P1 in mice embryos resulted in a similar phenotype as obtained for the S1P1 full knockout, suggesting that S1P1 functions mainly through ECs instead of other cell types. (Allende et al., 2003) It was found that S1P/S1P1 signaling pathway promotes vascular stabilization by activation of N-Cadherin, which is a cell adhesion molecule connecting ECs and MCs. (Paik et al., 2004)

2.3.4 Transforming growth factor-β (TGF-β)
TGF-β, a growth factor family with three different isoforms TGF-β1, TGF-β2 and TGF-β3, is expressed by a number of cell types, including ECs and MCs. Depending on its receptor TGF-β mediates distinct signaling pathways. TGF-β can be both pro- and anti-angiogenic. (Pepper 1997) The major receptors for TGF-β in regulating vascular stabilization include activin receptor-like kinase (Alk)-1, Alk-5, and endoglin. (Gaengel et al., 2009) Activation of Alk-1 triggers EC migration, proliferation, and inhibits vessel maturation and MC differentiation; whereas activation of Alk-5 instead mediates inhibition of EC migration, reduced proliferation, increased vessel maturation and MC differentiation, suggesting that TGF-β regulates vessel maturation and stabilization via a balance between Alk-1 and Alk-5. (Goumans et al., 2002) The determination of which signaling pathway TGF-β activates appears to depend on its concentration. At low doses, TGF-β promotes EC proliferation by activating TGF-β /Alk-1 pathway; while at high doses, Alk-5 is activated instead. (van den Driesche et al., 2003) Endoglin, a TGF-β co-receptor expressed specifically in ECs, modulates Alk-1 and Alk-5 mediated pathways, possibly by favoring the TGF-β/Alk-1 pathway. (Letamendia et al., 1998)

2.3.5 Vascular endothelial growth factor (VEGF) family
VEGF is a family of angiogenic growth factors expressed by a variety of cells, including keratinocytes, macrophages, mast cells, vSMCs, and ECs. Members of the VEGF family include VEGF-A, VEGF-B, VEGF-C, VEGF-D and placental growth factor (PIGF). VEGF is a major mitogen for ECs, mediated via VEGF tyrosine kinase receptors (VEGFRs) expressed on ECs. (Bussolino et al., 1997; Yancopoulos et al., 2000) It has been shown that VEGF plays a central role in neoangiogenesis by stimulating ECs proliferation, migration and increasing vascular permeability in a number of physiological and pathological processes. (Nor et al., 1999)
However, the role of VEGF in regulating vascular stabilization can be both positive and negative, depending on its spatial and temporal kinetics. On the one hand, VEGF enhances
EC survival and protects EC from apoptosis by up-regulating the expression of Bcl-2 (B-cell lymphoma 2), an apoptosis regulator protein. (Nor et al., 1999) Withdrawal of VEGF prior to stabilization and remodeling may result in excessive vessel regression by EC apoptosis. (Benjamin et al., 1999; Jain, et al., 1998) On the other hand, VEGF is also considered as a negative regulator for vessel maturation by disrupting VSMC function and pericyte coverage of nascent vascular sprouts, leading to vessel destabilization. (Greenberg et al., 2008). The overexpression of VEGF results in leaky, immature and unstable vessels, which contribute to a number of pathological conditions, such as tumors, diabetic retinopathy, and age-related macular degeneration (AMD). Therefore, the dosage of VEGF must be tightly regulated in a spatial, temporal and quantitative manner in therapeutic applications to avoid abnormal or aberrant vascular structure. (Yancopoulos et al., 2000)

2.3.6 Ephrins and notch

Ephrins and Notch are two signals that are generally involved in the differentiation of many cell types. In angiogenesis, the two signaling pathways are involved in the determination of arterio-venous vessel fate. (Jain 2003) Thus, the ephrins and Notch signaling pathways are considered novel targets for therapeutic angiogenesis. (Sullivan & Bicknell, 2003; Cristofaro & Emanuelli, 2009) The ephrin ligands and Eph receptors are both transmembrane molecules expressed on ECs and other cell types. (Yancopoulos et al., 2000; Cristofaro & Emanuelli, 2009) The ligand ephrin-B2 is expressed specifically in the arterial endothelium, while the receptor EphB4 expresses in the venous endothelium. The distribution suggest a role in defining boundaries between arterial and venous domains. (Adam et al., 1999; Wang et al., 1999). Notch is a family of transmembrane protein receptors that bind to ligands Delta/Serrate. The Notch pathway, in angiogenesis, is also required for arterial-venous differentiation. (Sullivan & Bicknell, 2003; Gaengel et al., 2009) Activation of Notch signaling leads to repression of venous cell fate in EC, while ablation of Notch function resulted in defects in blood vessel formation similar to those associated with improper arterial-venous specification. (Lawson et al., 2001; Liu et al., 2003)

2.3.7 Others

There are a number of other signaling pathways involved in the formation of stable vasculature. For example, brain derived neurotrophic factor (BDNF) is a neurotrophin for neuron survival and differentiation. It is also an EC survival factor involved in intramyocardial vessel stabilization, by activation of trk B receptors expressed on cardiac microvascular ECs. (Donovan et al., 2000) Monocyte chemotatic protein-1 (MCP-1) is a small cytokine best known for its ability to recruit monocytes after injury. However, recent studies have shown that MCP-1 improves vessel stabilization during angiogenesis by promoting MC recruitment and inducing VSMC proliferation. (Aplin et al., 2010; Selzman et al., 2002) Nitric oxide (NO), a multifunctional gaseous molecule that regulates various physiological functions is also involved in vascular stabilization. An in vivo tissue-engineered blood vessel model revealed that NO mediates EC-MC interaction and induces MC recruitment, vessel branching, and longitudinal extension and subsequent stabilization of the vessels. (Kashiwagi et al., 2005) A summary of the of numerous signalling pathways is provided in Table 1, with ligand/receptor pairs, cells that express these molecules, and their roles in vessel maturation and stabilization.
<table>
<thead>
<tr>
<th>Ligand (Cells)</th>
<th>Receptor (Cells)</th>
<th>Roles in vessel stabilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ang-1 (MCs)</td>
<td>Tie2 (ECs, MSCs)</td>
<td>Stabilizes vessels by mediating EC-MC and EC-ECM adhesion; Induces production of factors such as HB-EGF, HGF and MCP-1.</td>
</tr>
<tr>
<td>Ang-2 (ECs)</td>
<td>Tie2 (ECs; MSCs)</td>
<td>Destabilizes vessels by binding to Tie2 to attenuate the effect of Ang-1.</td>
</tr>
<tr>
<td>Bcl-2 (ECs)</td>
<td>ERKs (ECs)</td>
<td>Prevents EC apoptosis and enhances vessel durability.</td>
</tr>
<tr>
<td>BDNF (neurons; ECs)</td>
<td>Trk-B (neurons; ECs; MCs)</td>
<td>Promotes intramyocardial arteries and capillaries stabilization by enhancing EC survival during embryogenesis.</td>
</tr>
<tr>
<td>Delta/Serrate (ECs)</td>
<td>Notch (ECs)</td>
<td>Determines arterial-venous fate of ECs by repressing venous fate in arterial ECs.</td>
</tr>
<tr>
<td>Ephrin-B2 (Arterial ECs)</td>
<td>Eph-B4 (Venous ECs)</td>
<td>Determines arterial and venous EC specialization.</td>
</tr>
<tr>
<td>HB-EGF (ECs)</td>
<td>ErbB1, ErbB2 (MCs)</td>
<td>Promotes MCs proliferation and protects from apoptosis, involved in Ang(s) regulation.</td>
</tr>
<tr>
<td>HGF (ECs, MSCs)</td>
<td>C-met (ECs, SMCs)</td>
<td>Induces SMC migration, mediating angiopoietins regulated vessel stabilization.</td>
</tr>
<tr>
<td>MCP-1 (ECs, MCs)</td>
<td>CCR-2 (MCs)</td>
<td>Mediates spontaneous and Ang-1 induced MC recruitment.</td>
</tr>
<tr>
<td>PDGF-BB (ECs)</td>
<td>PDGFR-β (MCs; MSCs)</td>
<td>Promotes MC migration and proliferation; Induces MSCs differentiation to MCs.</td>
</tr>
<tr>
<td>S1P (Platelets)</td>
<td>S1P1 (MCs)</td>
<td>Activates adhesion molecule connecting ECs and MCs; directs MC recruitment and association to vessels.</td>
</tr>
<tr>
<td>TGF-β (ECs; MCs)</td>
<td>Alk1 (ECs; MSCs)</td>
<td>Promotes EC migration and proliferation; Inhibits vessel maturation and MC differentiation.</td>
</tr>
<tr>
<td></td>
<td>Alk5 (ECs; MSCs)</td>
<td>Induces MC differentiation and ECM production; Inhibits EC migration and proliferation.</td>
</tr>
<tr>
<td></td>
<td>Endoglin (ECs)</td>
<td>Modulates Alk-1 and Alk-5 mediated pathway by favoring Alk-1.</td>
</tr>
<tr>
<td>VEGF (Macrophages; MCs; fibroblasts)</td>
<td>VEGFRs (ECs)</td>
<td>Enhances EC survival by inducing Bcl-2 expression; Inhibits MC association and increases vessel permeability.</td>
</tr>
</tbody>
</table>

Table 1. Signaling Pathways Regulating Vessel Stabilization
Many of the signaling pathways mentioned above work in a coordinated fashion to regulate vessel stabilization. For example, MCP-1 was found to be one of the many cytokines released during angiopoietin induced MC recruitment. (Aplin et al., 2010) Other cytokines involved in angiopoietin function include EC-derived heparin binding-epidermal growth factor (HB-EGF) (Iivanainen et al., 2009; Stratman et al., 2010) and hepatocyte growth factor (HGF) (Kobayashi et al., 2006). PDGF-BB was found to promote MC proliferation partially by inducing the release of fibroblast growth factor-2 (FGF-2), which in turn transactivates FGFR-1. (Millette et al., 2006) PDGF-B stimulation also induces an acute production of TGF-\(\beta\), which in turn, negatively regulates Ang-1 expression induced by the PDGF-B stimulation. (Nishishita & Lin, 2004) Thus, a complex interaction of multiple signaling pathways is required to maintain vascular homeostasis and vascular stabilization.

3. Tissue engineering strategies

Extensive attention has been given to tissue engineering for its potential to restore, maintain or improve tissue functions. (Langer & Vacanti, 1993) However, the clinical application of engineered tissues requires the ability to form extensive, stable microvascular networks within engineered tissues. (Brey & McIntire, 2008) While strategies for neovascularization, including angiogenesis, vasculogenesis and arteriogenesis, have been extensively reviewed elsewhere (Brey et al., 2005; Ennett & Mooney, 2002; Sneider et al., 2009), increased attention is being given to the later stage of neovascularization, which is the maturation and stabilization of newly formed vessels. Different tissue engineering strategies, including protein delivery, gene therapy and cell therapy (Table 2) have been developed and tested in both in vitro and in vivo models.

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein Delivery</td>
<td>Better dose control than gene therapies; Temporal control over release can be achieved with certain delivery systems.</td>
</tr>
<tr>
<td>Gene Therapy</td>
<td>Long-term active growth factor expression; Delivery restricted to area of modified cells</td>
</tr>
<tr>
<td>Cell Therapy</td>
<td>Introducing cell population that is sensitive to stimuli unlike many cells in the disease/damaged tissue Cells can stimulate neovascularization by incorporation into new vessels or release of soluble factors</td>
</tr>
</tbody>
</table>

Table 2. Advantages and Disadvantages of General Strategies for Promoting Stable Neovascularization in Engineered Tissues
3.1 Protein delivery
3.1.1 Single factor delivery

The formation of a stable vascular network during normal healing involves a complex spatial and temporal regulation of a large number of angiogenic stimulators and inhibitors. (Jain, 2003) While it may seem logical that all of these factors would be required in order to generate vessels in engineered tissues, researchers have attempted to initiate the entire process through the delivery of a single factor. Members of the VEGF and FGF families were some of the first identified angiogenic growth factors and have been used in clinical trials for the treatment of limb ischemia. (Cao et al., 2005) However, the short term delivery of basic FGF (FGF-2) or VEGF may result in immature vessels, stable for only a short time prior to regression. (Dellian et al., 1996) Based on these issues others have chosen to use factors with a known role in angiogenesis stabilization. For example, PDGF-BB, Ang-1, HGF, and ephrin-B2 are some of the factors currently under investigation in animal and in vitro models. (Brey & McIntire, 2008)

It is possible that the short lifetime and immaturity exhibited by vessels stimulated in these cases is not the result of using only a single factor, but instead due to the transient nature of their presence. The short lifetime of proteins and their rapid transport out of tissues can results in only a short-term stimulus. A single protein delivered in a controlled manner may be able to provide enough signal to prolong the vascularization response and, possibly, increase vessel maturation. A number of delivery systems, including natural and synthetic biomaterials, have been developed for growth factor delivery. Commonly used materials include naturally occurring materials, such as alginate, gelatin and fibrin, as well as synthetic materials, such as poly (lactic-co-glycolic acid) (PLGA), and modified polyethylene glycol (PEG). Sustained growth factor delivery can be achieved and controlled using those materials in the form of hydrogels, micro/nano particles, fibers, porous matrix, or their combinations. (Chen & Mooney, 2003; Zisch et al., 2003a) The materials can be used to modulate delivery via diffusive resistance or through direct interactions between the materials and the growth factors. For example, the release of FGF-1 encapsulated in alginate microbeads can be modulated based on alginate composition. The release of FGF-1 from this relatively simple biomaterial can result in significantly prolonged increase in vascular density compared to a bolus injection of FGF-1. The enhancement in neovascularization can persist for greater than 6 weeks. In addition, release of FGF-1 from alginate can lead to a greater number of capillaries interacting with MCs but the fraction of MCs was not changed. (Moya et al., 2009, 2010)

In addition to diffusion-controlled release, molecules can also be covalently immobilized to a polymeric surface or matrix for growth factor delivery and presentation. For example, VEGF has been covalently bound to fibrin gels resulting in cell demanded release. The immobilized VEGF cannot diffuse out and is only released as the fibrin is degraded. Compared to VEGF that diffuses from the fibrin gels, which formed leaky and chaotic vessels, the VEGF immobilized fibrin gels were able to stimulate the formation of nonleaky, organized vasculature with MC coverage and BM deposition. (Ehrbar et al., 2004) Synthetic polymer matrixes have also been used for immobilized growth factor delivery. PEG hydrogels modified with MMP sensitive degradation sequences and cell adhesion sequences have been used in combination with a number of growth factors, including VEGF (Leslie-Barbick et al., 2011; Moon et al., 2010; Zisch et al., 2003b), Ephrin-A1 (Moon et al., 2007), and PDGF-BB (Saik et al., 2011). Capillary-like structures were formed only in the contact area with the immobilized VEGF in vitro, while after in vivo implantation, functional vessels were
formed with MC coverage. (Moon et al., 2010) Compared to single dose delivery, the sustained delivery of growth factors allows a more precise spatial control over the formation of vascular networks and may be able to lead to a more persistent vascular response and mature vessel formation even in the absence of additional maturation factors.

3.1.2 Multiple factors delivery

Since the formation of a stable vascular network appears to require the collaboration of a number of growth factors, the delivery of a combination (cocktail) of angiogenic molecules has been investigated as a method for improved vascular maturation. For example, co-delivery of both FGF-2 and VEGF from an acellular collagen-heparin scaffold resulted in higher vessel density and more MC covered mature vessels, compared to single factor delivery. (Nillesen et al., 2007) In addition, some of the molecules involved in the angiogenesis stabilization signaling pathways (Table 1) have been delivered to the target tissue together with stimuli involved in the initiation step. PDGF-BB, a signaling protein stimulating MC proliferation and recruitment, has been used in combined delivery with VEGF (Chen et al., 2007; Richardson et al., 2001) and FGF-2 (Cao et al., 2003; Lu et al., 2007). Tested in many animal models, the dual delivery of PDGF-BB, a vessel maturation factor, with VEGF or FGF-2 resulted in not only an increase in vessel quantity, but also improved vessel quality. In a mouse corneal micropocket model, the dual delivery of PDGF-BB with FGF-2 led to stable vessels lasting for more than a year, while vessels formed by single delivery of PDGF-BB or FGF-2 regressed within 70 days (Cao et al., 2003). Other vessel maturation factors, such as Ang-1 (Peirce et al., 2003) and S1P (Tengood et al., 2010), have also been investigated in combined delivery systems with VEGF resulting in stable, long-lasting vessels compared to VEGF delivery alone.

Moreover, it appears that in dual factor delivery, the sequence of the molecules administrated matters. Angiogenic factors, such as VEGF and FGF, are involved in the initial stages of angiogenesis primarily acting on ECs, while vessel maturation factors, such as PDGF-BB, Ang-1 and S1P, are involved in the later stage of vessel stabilization, mostly targeting MCs. Therefore, a temporal separation for distinct kinetics is likely preferred with initial administration of angiogenic factor(s) followed by a vessel maturation factor(s). The sequential delivery of VEGF followed by S1P (Tengood et al., 2010) and FGF-2 followed by PDGF (Tengood et al., 2011) resulted in increased vessel density and stability compared to simultaneous dual delivery. A reverse in the sequential delivery results in decreased vessel density and stability, presumably due the factors working against each other. It was proposed that early delivery of vessel maturation factors restricts EC tube formation and expansion, resulting in decreased vessel density and vessel diameter. The late delivery of angiogenic factors was thought to then inhibit MC recruitment, resulting in excessive formation of immature vessels susceptible to regression. (Tengood et al., 2010, 2011)

With certain modifications, sequential delivery of multiple growth factors can be achieved with delivery materials. For example, alginate can be made into multilayer microbeads with an internal region for slow protein release and external layer for faster protein release. (Khanna et al., 2010) PLGA, a biodegradable copolymer, can be made into microspheres encapsulated porous matrix, in which the microspheres are loaded with factor required for later stage of angiogenesis (PDGF-BB) with slow release kinetics, while the porous matrix is loaded with factor required for initial stage of angiogenesis (VEGF) with fast release rate.
Formation of Stable Vascular Networks in Engineered Tissues

Although the temporal and spatial kinetics of the growth factor(s) delivered to the target tissues can be controlled using certain delivery systems, there are still limitations existing with this strategy. The production and purification of massive amounts of active protein factors can be very expensive. And since most growth factors have relatively short half-lives, their bioactivity can be compromised due to storage, delivery routes, and metabolism \textit{in vivo}. Moreover, the optimal combination and concentration of growth factors for different engineered tissues and the any side effect after long-term administration still need to be identified.

3.2 Gene delivery

3.2.1 Genes

While the use of protein delivery offers improved control of the dose for the growth factors, there are also some disadvantages for those strategies, including expensive mass production of the proteins, and short protein half lives \textit{in vivo}. Those limitations can potentially be overcome by means of gene therapy. \cite{Rissanen et al., 2001} Gene therapy allows prolonged overexpression of proteins, theoretically leading to sustained therapeutic effects after a single application, with minor change in systemic growth factor concentrations. \cite{Gosh et al., 2008} Therefore, DNA sequences encoding for growth factors involved in angiogenesis can be used to improve neovascularization. In this section, we will only review genes used directly to the testing model or patients, either by systemic or local injection, or release from polymeric system. Genetic modification to cells for neovascularization will be introduced in the following section, cell therapies.

Transient \textit{vegf} gene expression \textit{in vivo} results in potent angiogenic sprouting, however, the resulting vasculature appears to be immature and leaky, similar to the results of VEGF protein delivery. \cite{Rissanen et al., 2003} When \textit{vegf} gene is co-administrated with genes encoding angiogenic maturation factors, such as \textit{pdgf-b} \cite{Hao et al., 2004a; Korpisalo et al., 2008; Kupatt et al., 2010} and \textit{ang-1} \cite{Chen et al., 2007; Siddiqui et al., 2003; Su et al., 2009}, the vasculature is longer-lasting and less permeable, with increased perfusion, which is also similar to the results of dual protein growth factor delivery. Other genes delivered for stable vascular networks formation includes \textit{ang-1} \cite{Shyu et al., 1998}, \textit{pdgf-b} \cite{Shea et al., 1999}, \textit{fgf-2} with \textit{pdgf-b} \cite{de Paula et al., 2009; Hao et al., 2004b}, \textit{inf-β} \cite{Dickson et al., 2007}, and \textit{neutrophin-3} \cite{Cristofaro et al., 2010}.

3.2.2 Vectors

Vectors are needed in order for the genetic material to be transferred into cells and expressed. Commonly used vectors for gene delivery are plasmids and viral vectors. \cite{Rissanen et al., 2001} Plasmids are DNA sequences that can automatically repeat and express in a host cells. They are easy to manufacture in a large quantity, and have low toxicity with a low immune response. However, naked plasmid DNA usually has very low transfection efficiency except in muscle tissue, therefore biomaterials have been used to increase plasmid-based gene transfer efficiency. \cite{Yia-Herttuala & Alitalo, 2003} For example, PLGA, a degradable copolymer that has been widely used as a tissue engineering scaffold and drug delivery vehicle, has been applied as a carrier for plasmid. PLGA can be made into nanoparticles with the modification of cationic polymer chitosan to increase plasmid transfer efficiency. \cite{Tahara et al., 2008} It can also be prepared as a matrix for sustained plasmid delivery, which in turn, results in longer term growth factor expression. \cite{Nie et al.,
Viral vectors, on the other hand, have much higher transfection efficiency compared to naked plasmids, but have significant safety concerns. Adenoviruses (Levanon et al. 2006) and adeno-associated viruses (AAV) (Arsic et al., 2003) are the most commonly used viral vectors for growth factor gene delivery. While adenoviral vectors may cause inflammatory reactions and lack sustained expression, AAV only causes a very mild immune response and has shown long-term transgene expression, which makes it more attractive in gene therapy. (Dickson et al., 2007) Despite the success of gene therapies for the formation of stable vasculature in some animal models, clinical efficacy has yet to be observed. The pharmacokinetics and pharmacodynamics of gene vectors and products remain largely unknown and difficult to control. In addition, data from long-term follow up of clinical studies is lacking. (Yia-Herttuala & Alitalo, 2003) Moreover, the method of gene delivery must be carefully selected to balance the need for maximum transfer efficiency with minimum risk of vector related safety issues. (Brey & McIntire, 2008)

3.3 Cell therapies

Although the delivery of growth factors or their genes has shown great potential to activate the host angiogenic response, certain pathological conditions may also require the transplantation of appropriate blood vessel forming cells, due to loss of, or damage to, the host vascular cells. In addition, these cells may rapidly assemble into vessels which can insonicate with the host, decreasing the time required for tissue perfusion relative to protein/gene approaches. In cell therapies, the cells would have to be isolated from donor or host sources, expanded and implanted into the target tissue, where the cells proliferate and incorporate into functional vessels. (Ennett & Mooney, 2002) ECs are of great interest in this strategy for their potentials to mimic vasculogenesis and assemble into capillary structures, as well as to release multiple angiogenic factors following implantation. (Brey et al., 2005, 2008) Transplantation of mature ECs have been shown to increase neovascularization in engineered tissues. (Nor et al., 2001) However, the limited availability and proliferation capability of mature ECs limits this approach. (Kim & von Recum, 2008) Therefore, a number of other cell types and modifications may be needed in addition to the used of mature ECs for stable vasculature formation. Recent preclinical studies have shown that stem and progenitor cells derived from embryos or adult bone marrows have the potential to restore tissue vascularization after ischemic events. (Rafi & Lyden, 2003) Unlike mature cells, stem and progenitor cells have the potential to self-renew and differentiate into multiple cell types. While mature ECs seeded into collagen-fibronectin gels and implanted into different animal models suffered from poor perfusion and fast regression (Au et al., 2008b; Koike et al., 2004), ECs derived from human embryonic stem (hES) cells formed durable and functional blood vessels in vivo, supporting perfusion for over 150 days. (Wang et al., 2007) Co-delivery of ECs with mesenchymal stem cells (MSC) can also result in stable and functional vessels, lasting for more than 130 days, which was not achieved when either of the cell types were used alone. (Au et al., 2008a) Endothelial progenitor cells (EPCs) derived from circulating blood or bone marrow have also been used to introduce neovascularization in vivo. (Park et al., 2004) However, in order to form stable and durable vascular network, EPCs are often co-implanted with other cell types, such as VSMCs (Melero-Martin et al., 2007) or mesenchymal progenitor cells (MPCs)
Formation of Stable Vascular Networks in Engineered Tissues

(Melero-Martin et al., 2008). EPCs are expected to form the lumen of new vessels and VSMCs/MPCs serve as perivascular cells adjacent to the lumen providing survival and stability signals. EPCs derived from adult peripheral blood (PB) as well as umbilical cord blood (CB) have been compared for their ability to form functional long-lasting vessels in vivo. When co-implanted with 10T1/2 cells, a type of mouse MPCs, PB-EPCs and CB-EPCs both formed new vessels. While PB-EPCs formed vessels were unstable and regressed in 3 weeks, CB-EPCs formed normal-functioning vessels that lasted for more than 4 months, possibly due to a greater proliferative capacity of these cells. (Au et al., 2008b) Therefore, CB-EPCs hold great potential for their ability to form stable vasculature in engineered and regenerated tissues. Adipose-derived stromal cells (ASCs) have also been investigated as another potent candidate for neovascularization cell therapy, due to their ability to stimulate angiogenesis as well as vessel maturation in vivo. (Rubina et al., 2009)

Cell therapies can also be used in combination with single or multiple growth factors or their genes to improve the function of the transplanted cells. Stromal cell derived factor-1 (SDF-1), a small chemokine involved in recruiting EPCs, was delivered in combination with EPCs to promote EPC engraftment in ischemic muscle. (Kuliszewski et al., 2011; Yu et al., 2009) Dual delivery of VEGF and MCP-1 from alginate microbeads has been shown to support EC transplantation, with VEGF improving survival of transplanted ECs and MCP-1 inducing MCs recruitment. (Jay et al., 2010) A similar effect was observed when co-delivering FGF-2 and granulocyte-colony stimulating factor (G-CSF) with bone marrow cells transplanted in a rodent model of critical limb ischemia. While FGF-2 directs EC migration and proliferation, G-CSF promotes the homing of bone marrow stem cells (in particular EPCs) to the ischemic site. (Layman et al., 2011) PLGA microparticles loaded with VEGF and hepatocyte growth factor (HGF), as well as Ang-1, were delivered in combination with cord blood derived vasculogenic progenitor cells. The delivery of triple growth factors significantly enhanced the effect of cell therapy in multiple animal models, with increased progenitor cell incorporation, improved vessel function, and stabilization. (Saif et al., 2010)

In addition to combined gene or protein delivery with cells, ECs and EPCs can also be genetically modified ex vivo prior to implantation to enhance vascular stabilization. For example, Bcl-2 is an anti-apoptosis protein that is upregulated during angiogenesis. ECs transfected with the bcl-2 gene to inhibit EC apoptosis have shown increased vascular density and stability. Vessels formed with bcl-2 transduced ECs connect with host circulation and last for at least 2 months. (Enis et al., 2005; Schechner et al., 2000; Shepherd et al., 2009) EPCs with vegf gene overexpression have been shown to increase EPC migration and reduce serum starvation-induced apoptosis in vitro. (Yu et al., 2009) When implanted in vivo, the vegf transfected EPCs stimulated greater blood flow and angiogenesis in animal models of ischemia than EPCs alone. (Ikeda et al., 2004)

In spite of the promising results seen with cell therapies, certain limitations still exist. First, the sources of cells for transplantation, either mature cells or progenitor cells, can be problematic. If autologous cells have to be used, there are usually limited number of cells available, not to mention that their viability and activity are compromised due to disease or aging of the patient. (Brey & McIntire, 2008) If allogeneic and xenogeneic cells can be used, they would initiate a host immune response, which requires immunosuppressive medication, making the patient vulnerable to infection and other diseases. Secondly, the expansion of isolated cells ex vivo can be costly, time-consuming and technically challenging. If mature
Regenerative Medicine and Tissue Engineering - Cells and Biomaterials

ECs and VSMCs are used for transplantation, it often requires longer times to reach a sufficient number, due to their low self-renewal capability. Stem and progenitor cells, on the other hand, have much higher proliferation rate. However, the expansion of these cells while maintaining their multipotency may be a technical challenge. (Ennett & Mooney, 2002) In addition, determination of the optimal cell types and concentration, delivery route, as well as identifying growth factors or genes to couple with cell transplantation requires further research. And lastly, the exact roles and ultimate fates of the transplanted cells remain largely unknown. Whether or not the transplanted cells would cause some other adverse complications, such as tumor angiogenesis, atheroma formation and retinopathies, is still unknown. (Rafii & Lyden, 2003) Those questions need to be answered with preclinical studies before proceeding to extensive clinical applications.

3.4 Analytical methods
3.4.1 In vitro models
In order to investigate the efficacy of different tissue engineering strategies for neovascularization, a serial of preclinical tests should be done with different analytical models before jumping to any conclusion and proceeding with patients. In vitro models are usually used to allow the evaluation of a single or a combination of factors (protein, gene or cells) in a relatively simple, robust, and controlled system. Most early in vitro models of neovascularization only used ECs to spontaneous form tubes in a 2D or 3D environment to mimic angiogenesis or vasculogenesis. (Francis et al., 2008) Those models have been used to investigate the effect of soluble or insoluble factors, as well as genetic manipulation to the formation of new vessels in vitro. However, since the stabilization and remodeling stage of angiogenesis involves the interaction between ECs and MCs, many later studies have incorporated SMCs co-cultured with ECs. ECs and SMCs with a defined number can be co-cultured as a spheroid and put into a 3D scaffold. By fluorescently labeling the two cell types with different dyes, the cells can be visualized and distinguished under fluorescence microscope. The coculture spheroid can spontaneously organize into a core of SMCs and a surface layer of ECs, which is a spherical mimic of cylindrical blood vessels where there is a surface of ECs and coating MCs. (Korff et al., 2001) This model allows study of the interactions between ECs and SMCs and their roles in angiogenesis and vessel stabilization. (Brey et al., 2005)

Another in vitro model commonly used in studying angiogenesis and vessel stabilization is called aortic ring assay. (Nicosia & Ottinetti, 1990) The model results from the isolation of a 1-2 mm cross-section of aorta from rats or mice which is then embedded in a 3D biomaterial. Under certain stimuli, new vessels form with an inner core of ECs and a outer layer of MCs, which can then be visualized by immunofluorescent staining for different cellular markers. By treating the culture with vessel maturation factors, such as Ang-1 and MCP-1, increased MC recruitment was observed in this model. (Aplin et al., 2010; Iurlaro et al., 2003) However, since the model uses an organ part with multiple cell types, many other undefined cell types can also contribute to the network formation. It is difficult to isolate the contribution of each cell type in this model. (Brey et al., 2005)

3.4.2 In vivo models
While the in vitro models provide convenient evaluation methods for the study of vessel assembly, the controlled environment differs dramatically from the actual in vivo
environment where other factors, such as blood flow, inflammatory response, endocrine regulation, etc. contribute to the process. Therefore, studies with in vitro models are often followed by in vivo studies. A number of in vivo models have been developed to isolate the process of neovascularization, with different aspects of focus in different organ systems. Commonly evaluated parameters in most in vivo models include: vessel density, SMC coverage rate, vessel lasting or regression time, vessel size distribution, blood perfusion rate, vessel permeability, etc.

Subcutaneous implantation of scaffold materials is a commonly used method to evaluate protein, gene or cell therapies. (Jay et al., 2010; Shea et al., 1999; Tengood et al., 2010) Growth factors, genes or cells can be embedded a matrix material, which will then be implanted subcutaneously to animals as a "plug". The presence of therapeutic agents will affect local neovascularization and tissue invasion into the material. At different time points after the implantation, local tissues will be harvested for evaluation. Typically histologic analysis of vessel density, diameter, and SMC coverage are performed, but more sophisticated techniques such as confocal microscopy, vascular casts, and microCT following contrast enhancement can be used to provide a better understanding of vascular structure. This model is relatively easy to use, and can be applied to evaluate different therapeutic strategies. However, all animals need to be sacrificed in order for the neovascularization assessment, and it only provides the evaluation of some basic parameters. Therefore, other animal models are often used to provide greater detail into the process.

The mouse corneal micropocket assay allows for monitoring neovascularization without sacrificing animals. The method has been used by Cao et al. for the evaluation of vascular stability in response to dual growth factor delivery. Briefly, growth factor-loaded micropellets are implanted into a mouse corneal micropocket. Vessel lengths and vascularization areas of the eyes can be measured at various time points. The method allows the observation of neovascularization frequently without invasive surgery, thus limiting the number of animals used. Moreover, it allows long-term observation of vessel persistence. This method has only been used for evaluating growth factors or gene delivery, either as soluble factors (Cao et al., 2003; Lai et al., 2001; Lu et al., 2007) or immobilized in a hydrogel (Moon et al., 2010; Saik et al., 2010). Use of this model to evaluate cell therapies is still rare to our knowledge. On the other hand, cranial windows model of severe combined immunodeficient (SCID) mouse has been used to evaluate cell therapies. (Au et al., 2008a,b; Wang et al., 2007) Similar to the corneal model, the cranial windows model also allows observation of neovascularization for several months without sacrificing the animals.

Mice, rats or rabbits hindlimb ischemia models have been used to evaluate the efficacy of protein delivery, gene therapy and cell therapy in neovascularization. (Cao et al., 2003; de Paula et al., 2009; Laymen et al., 2011) The model applies ligation to the femoral artery and its branches to create ischemia in one limb. This model attempts to mimic peripheral arterial occlusive disease (PAOD), however this model only recreates the ischemic event and not the chronic vascular disease that lead to the condition in humans. After a certain treatment strategy, a number of neovascularization parameters can be assessed, including flow recovery rate. The intensity of blood perfusion in the created ischemic area can be measured with different imaging techniques include laser Doppler or after systemically injection of fluorescent- or radio-labeled particles. Another ischemic model is the myocardial infarction heart model. Instead of femoral artery, the left anterior descend
artery (LAD) is ligated in the animal to create ischemia. (Hao et al., 2004) Besides common neovascularization parameters, cardiac morphology and function can also be evaluated using this model. There are also a number of other animal models used in evaluating angiogenesis and vascular stability. The chorioallantoic membrane (CAM) model with chicken or quail embryos is a simple method to evaluate vascularization in response to different therapies. (Saif et al., 2010; Stratman et al., 2010) After therapeutic agents injection or implantation, the angiogenic effect can be easily assessed by imaging vascular regions of the CAM. This model is cost efficient and easy to perform compared to other mammalian animal models. Suitable animal models should be selected based on the target function of the therapeutic strategy. In most cases, one single animal model may not be sufficient to testing all the aspects of interest in neovascularization, therefore multiple in vivo models may be required to provide extensive understanding of the potential strategy. In addition, if the technique is ultimately prepared for a specific tissue engineering application then the appropriate pre-clinical model of the diseased or damaged tissue should be used.

4. Conclusions

The formation of stable vascular networks is critical for the survival of regenerated tissue in tissue engineering applications. In many cases, current strategies can result in immature vessel formation, providing poor perfusion and eventually leading to vessel regression. Recent studies have focused more on the later stage of neovascularization, which is the stabilization and remodeling of new vasculature. The process is highly regulated by both soluble and insoluble factors. Studies in the cellular and molecular mechanisms involved in vascular maturation have provided insight towards the development of strategies for the formation of stable vascular networks in engineered tissues. Successes have seen in many preclinical studies with these strategies; however, future success requires collaboration from interdisciplinary fields, including molecular and cellular biology, engineering and medicine.

5. References

Benjamin LE, Hemo I, & Keshet E. (1998) A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. *Development.* Vol.125, No.9, (May 1998), pp.1591-1598. ISSN 1011-6370

(April 2000), pp.389-395. ISSN 1078-8956

No.11, (November 2001), pp.1019-1020. ISSN 1087-0156

pp.653-660. ISSN 1078-8956

simultaneously encoding VEGF and angiopoietin-1 enhances neovascularization in

engineering. _Pharm Res._ Vol.20, No.8, (August 2003), pp.1103-1112. ISSN 0724-8741

delivery patterns blood vessel formation and maturation. _Pharm Res._ Vol.24, No.2,
(February 2007), pp.258-264. ISSN 0724-8741

therapeutic neovascularization in a mouse model of limb ischemia. _Arterioscler Thromb Vasc Biol._ Vol.30, No.6, (June 2010), pp.1143-1150. ISSN 1079-5642

Davis GE & Senger DR. (2005) Endothelial extracellular matrix: biosynthesis, remodeling,
and functions during vascular morphogenesis and neovessel stabilization._Circ Res._
Vol.97, No.11, (November 2005), pp.1093-1107. ISSN 0009-7300

No.4, (April 2004), pp.261-270. ISSN 1471-0072

Dellian M, Witwer BP, Salehi HA, Yuan F & Jain RK. (1996) Quantitation and
physiological characterization of angiogenic vessels in mice: effect of basic
fibroblast growth factor, vascular endothelial growth factor/vascular
permeability factor, and host microenvironment. _Am J Pathol._Vol.149, No.1, (July
1996), pp.59-71. ISSN 0002-9440

de Paula EV, Flores-Nascimento MC, Arruda VR, Garcia RA, Ramos CD, Guillamon AT &
Annichino-Bizzacchi JM. (2009) Dual gene transfer of fibroblast growth factor-2 and
platelet derived growth factor-BB using plasmid deoxyribonucleic acid promotes
effective angiogenesis and arteriogenesis in a rodent model of hindlimb ischemia.

regression. _Circ Res._ Vol.87, No.6, (September 2000), pp.434-439. ISSN 0009-7300

& Hempstead BL. (2000) Brain derived neurotrophic factor is an endothelial cell

Stratman AN, Schwindt AE, Malotte KM & Davis GE. (2010) Endothelial-derived PDGF-BB and HB-EGF coordinately regulate pericyte recruitment during vasculogenic tube

1. Introduction

Anchorage dependent cells require a suitable substrate or scaffold for attachment, adhesion and growth. Conventionally cells are detached from substrates by mechanical or enzyme treatment, which can affect cell re-adhesion, viability etc. Poly (N-isopropylacrylamide) [PNIPAAm] is a well known temperature sensitive polymer with LCST of 32 °C and serve as a good substrate facilitating cell detachment without the use of proteolytic enzymes. Polymer and copolymers with N-isopropylacrylamide [NIPAAm] been proved to be excellent for cell detachment by temperature treatment. The co-monomers provide functional groups that bind to biological molecules and form hybrid polymer for enhanced cell function. This chapter reviews and compares different smart intelligent surfaces, method of preparation, characterization techniques and applications of cell sheet engineering. PNIPAAm based surfaces are able support cell growth and then to detach without any chemical reagent step. These thermo responsive substrates avoid the problem associated with scaffold based tissue engineering.

2. Cell sheet engineering

Tissue engineering involves ex vivo expansion of anchorage dependent cells in three dimensions to provide functional tissues (Langer and Vacanti, 1993). Prof. Robert Langer, Dr. Joseph and Dr. Charles Vacanti proposed the concept of tissue engineering in order to overcome the limitations of organ transplantation. Over the past 20 years, using the technology of tissue engineering, many kinds of tissues such as bone, heart valves, cartilage, corneal epithelium, cardiac muscles and skin have been successfully reconstructed (Yang et al, 2005; Nishida et al, 2004). Most anchorage dependent mammalian cells must adhere to a solid substrate in order to proliferate and manifest their function. The substrates used for cell growth should possess many features like the ability to encourage cell adhesion, spreading and proliferation. Also it is essential that the cells are easily detached from the substrate after it has grown. Conventionally enzymatic proteolysis of extracellular matrix (ECM) with trypsin or other proteolytic enzymes used to detach cells from substrates which can affect cell re-adhesion, cell viability etc (Kumashiro et al, 2010). Thermoresponsive polymers are of great interest in tissue engineering applications specifically in cell sheet detachment. The effect of these stimuli responsive polymers was first studied by Heskins...
and Guillet in early 1960’s (Heskins and Guillet, 1968). The smart behavior of these polymers is because of its change in molecular conformation in response to a temperature change in the surrounding environment. N-isopropylacrylamide [NIPAAm] is a well characterized thermo responsive polymer that shifts its phase properties above and below its lower critical solution temperature (LCST) of 32 °C. Above the LCST, polymer will be hydrophobic resulting in the attachment and growth of cells while below the LCST it turns hydrophilic enabling the detachment of cells as a single cell or as a uniform cell sheet. Since the cell sheet could keep the cell junctions and deposited extra cellular matrix along with it, physiological functions and bioactivity of the cell sheet are similar to the cells in tissue, which could provide potential application as an engineered tissue. Polymer and copolymers with NIPAAm has been proved to be excellent for cell detachment by temperature variation. The group of Okano and coworkers done a lot of studies in thermoresponsive, Poly(NIPPAm) based polymers and proposed a new approach in tissue engineering called cell sheet engineering (Yamada et al, 1990).

3. Mechanism of cell attachment and detachment from the thermoresponsive surfaces

Cells initially attach to a surface by a process called passive adhesion in which the adherence is due to the physicochemical interaction such as hydrophobic interactions, coulomb forces and van der Waal’s forces. Then the cells bind to a specific site on adhesive protein by a process called active adhesion via a receptor protein called integrin. Conventionally enzymes are used to detach cells from substrates, resulting in the destruction of cell membrane proteins and ECM which can affect cell re-adhesion and viability. But cell detachment from thermoresponsive surfaces retain their cellular structure and functions in which cell detachment occurs in a two step mechanism via a passive step, followed by an active step. In the passive step cell detachment is induced by the hydration of PNIPAAm chains on the substrate whereas in active step change of cell shape and detachment from the surface is driven by cytoskeletal action and metabolic process (Okano et al, 1995).

4. Methods of preparation of temperature responsive intelligent surfaces

Thermoresponsive polymers can be grafted on different substrates such as silicon, glass, quartz, polyethyleneterephthalate sheets etc but commonly grafted on Tissue Culture grade Poly Styrene (TCPS). The choice of substrate, method of application of thermoresponsive polymer on the substrate and thickness of the grafted polymer has a major role on cell attachment and detachment phenomena (Elloumi-Hannachi et al, 2010). It is reported that a grafting thickness of 15 to 20 nm is a prerequisite for efficient cell attachment and detachment (Akiyama et al, 2004).

Many types of polymerization techniques can be used for grafting the thermoresponsive surfaces such as Electron beam irradiation, Gamma radiation, Plasma polymerization, UV irradiation and Atom transfer radical polymerization.

4.1 Electron beam induced polymerization

Electron beam polymerization (EB) is a popular method used for producing thermoresponsive surfaces for cell sheet engineering (Yamato et alj, 2010). NIPAAm monomer is covalently bonded onto the TCPS (tissue culture polystyrene) dishes by the irradiation of electron beam
on to the monomer. Electron beam method facilitates even, thin grafting and the large scale production of temperature responsive culture dishes even though it is expensive. The thickness is controlled by monomer concentration and radiation energy (Nagase et al, 2009).

4.2 Gamma irradiation
Gamma radiation is another method for the grafting of thermoresponsive surfaces on TCPS (Akiyama et al, 2004; Anil Kumar et al, 2007). This study also revealed that grafting by gamma irradiation is comparable with conventional electron beam irradiation and facilitates batch processing of polymerization and grafting of PNIPAAm. Moreover it avoids most sophisticated equipment like electron beam accelerator. The efficacy of the grafted surface was confirmed by the successful growth of different cell lines such as L-929 (mouse subcutaneous connective tissue fibroblast), NRK-49F (normal rat kidney), SIRC (rabbit corneal epithelium), and HOS (human osteosarcoma) and detachment of the cell sheets while maintaining the cell-cell and cell-extra cellular matrix contact.

4.3 Plasma polymerisation
Plasma polymerization is a different single step method which facilitates the preparation of thermoresponsive coatings on a solid substrate. A plasma glow discharge of NIPAAm monomer vapour was used to deposit PNIPAAm onto solid surfaces such as silicon, glass or TCPS. The cell adhesion/detachment studies showed to be insensitive to the grafted layer thickness. But this method is not suitable for large scale production due to the difficulties related with continuous treatment and size (Canavan et al, 2005).

4.4 UV irradiation
UV irradiation is a yet another approach for the grafting of thermoresponsive coatings on to the solid substrate. Photopolymerisation and photografting of PNIPAAm is done on TCPS by UV irradiation (365 nm for 5 to 30 min) using photo initiators such as benzophenone (Nagase et al, 2009).

4.5 Atom transfer radical polymerization technique (ATRP)
ATRP facilitates the preparation of surfaces with dense polymer brushes from surface immobilized ATRP initiators (Mizutani et al, 2008). Preparation of PNIPAAm brushes on poly(4 vinyl benzyl chloride) coated TCPS surface using ATRP and application of these grafted surfaces to thermoresponsive cell culture substrates were studied by Mizutami et al. Attachment/ detachment process is favorable only in thinner surface less than 30 nm.

4.6 Reversible addition fragmentation chain transfer polymerization technique (RAFT)
RAFT polymerization technique allows the preparation of thermoresponsive PNIPAAm brushes with controlled chain length and graft density for cell sheet harvest. Chain length and density of PNIPAAm grafted on the surfaces have a significant effect on the thermoresponsive cellular behavior.

4.7 Oxygen plasma treated PIPAAm surface
Oxygen plasma treated PNIPAAm film is a promising material as a cell culture substrate in cell sheet engineering (Shimizu et al, 2010). A cast and dried film of thermoresponsive
PNIPAAm was fabricated and treated with high intensity oxygen plasma. This novel method of cell sheet has mechanical strength with high stability and low cost.

4.8 Solution casting method
Most of the above techniques are expensive and might not be reachable to all researchers. An auxiliary simple and cost effective approach is the coating of thermoreponsive polymer onto the TCPS by solution casting method. Thickness of coating obtained by this method is reported to be in micron level and astonishingly doesn’t affect the cell attachment and proved to be efficient for cell sheet attachment and detachment process (Joseph et al, 2010; Varghese et al, 2010).

5. Different methods of characterization of thermoresponsive substrates
Different characterization techniques are employed for the physicochemical and biological evaluation of thermoresponsive substrates which is very important. Physicochemical characterization techniques such as Attenuated total reflectance Fourier Transform spectroscopy (ATR-FTIR), Nuclear magnetic Resonance spectroscopy (NMR) are used for the qualitative and quantitative detection, while Atomic Force Microscopy (AFM), Ellipsometry, surface Plasmon resonance, Profilometry are used for the determination of thickness of the grafting or coating.

The presence and quantity of PNIPAAm on the thermoresponsive surface can be determined by the technique ATR-FTIR (Akiyama et al, 2007). The presence of characteristic peak of amide carbonyl group around 1650 cm$^{-1}$ showed the presence of NIPAAm. The amount of PNIPAAm on the surface of TCPS significantly affects cell adhesion behaviour. The quantity of grafted PNIPAAm could be detected by the ratio of peak intensities (I_{1650}/I_{1600}) in ATR-FTIR.

NMR technology also provides quantitative as well as qualitative assessment of thermoresponsive surface (Joseph et al, 2010).This techniques provides detailed structural information about the polymers and gives a better understanding about the polymerization mechanism.

Water contact angle measures the hydrophobicity and hydrophilicity of the surface and a contact angle of 70° proved to be optimal for cell sheet adhesion and detachment (da Silva et al, 2007). The thermoresponsive surface wettability changes of free end linear and multipoint attached PNIPAAm surfaces were investigated using the Wilhelmy plate technique. A large contact angle change was observed for an end grafted PNIPAAm surfaces whereas a small contact angle change for multipoint attached surfaces due to the restricted chain conformation of the multipoint attached grafted surfaces.

Differential scanning calorimetry (DSC) is widely used for the detection of LCST. The LCST of homopolymer PNIPAAm lies around 32 °C and copolymers of PNIPAAm centered below or above 32°C depending upon the hydrophobicity and hydrophilicity of the comonomer.

X-ray Photoelectron Spectroscopy (XPS) is one of the efficient methods for the qualitative assessment of the presence of PNIPAAm on different substrates (Jun and Okano, 2010).The elemental composition of carbon, nitrogen and oxygen on the grafted thermoresponsive surface, could be determined and should be in good agreement with the values based on the stochiometry of the monomer, NIPAAm.
AFM can be used for the quantitative and qualitative characterization of thermoresponsive surfaces such as to observe the nano texture of the surface and to measure surface roughness and the thickness of the PNIPAAm coating (Jun and Okano, 2010). Profilometry is another method to visualize the surface morphology and the quantitative analysis of surface roughness and thickness from the surface profile measurement (Joseph et al, 2010). Determination of thickness from ellipsometry and surface plasmon resonance is very difficult because of the similarity in refractive index of both PNIPAAm and polymeric substrates (Nagase et al, 2009).

Biological evaluations of thermoresponsive surface is the most important characterization technique for cell sheet engineering and are done by cytotoxicity analysis, cell activity measurement, thermoresponsive efficacy, viability analysis and cell sheet characterization etc. The cytocompatibility, specific cytocompatibility, thermoresponsive efficacy studies are usually done using L929 cells, SIRC cells, HOS, NRK 49 F, Human fetal lung fibroblasts (TIG-1), primary cells from rabbit cornea, rat primary hepatocytes etc (Anil Kumar et al, 2007; Joseph et al, 2010; Varghese et al, 2010). Cells were maintained in MEM (Minimum essential medium) supplemented with 10% FBS (fetal bovine serum), 100 IU/mL pencilin and 100 µg/ml streptomycin at 37° C in a 95 % humidified atmosphere with 5 % CO₂. The cytotoxicity analysis can be done by using direct contact method, indirect contact method; High density polyethylene and zinc diethyl dithiocarbamate stabilized polyvinylchloride discs are usually used as negative and positive controls respectively. The cytotoxic evaluation is done by the comparison of the morphology of cells with positive and negative controls. MTT {(3-(4,5-dimethyl thiazol -2-yl) -2,5-diphenyl tetrazolium bromide} cell culture assay is usually used to evaluate the cell proliferation. Absorbance is measured using a multiwell plate reader at 540 nm. Cell viability is usually determined using neutral red staining. The thermoresponsive efficacy of the substrate is evaluated by retrieving the cell sheets by lowering the temperature below the LCST of the polymer and the viability of the retrieved cell sheet is determined using FDA (fluorescein diacetate) staining and observed under a fluorescence microscope. The cell sheet characterization is done by immuno staining technique using antibodies against proteins characteristic to tissue of interest.

6. Various thermoresponsive substrates for cell sheet engineering

Thermoresponsive substrates designed for cell sheet engineering have mainly used PIPAAm and its copolymers for cell adhesion and detachment. The use of thermoresponsive substrate to detach the confluent cell sheets without the use of conventional enzymatic treatments was first reported by Takezawa et al in 1990 (Takezawa et al, 1990). In this study they have used PIPAAm as a substratum by conjugating it with collagen for the culture of human dermal fibroblasts. These fibroblasts monolayer were harvested at reduced temperature by the dissolution of the dish coating. By the same time Yamado et al reported the successful culture of bovine hepatocytes on PNIPAAm grafted TCPS (Yamada et al, 1990). Homopolymer of NIPAAm has been reported to be grafted by various methods such as Electron beam polymerization, UV irradiation, Gamma irradiation etc and proved to be an excellent substrate for cell sheet engineering.

Copolymerization of NIPAAm with hydrophobic or hydrophilic monomer can modulate LCST for the systematic regulation of cell attachment and detachment. Thermoresponsive
copolymers based on N-isopropylacrylamide-Co-glycidylmethacrylate(NGMA), N-isopropylacrylamide-methylmethacrylate (NMMA), (Varghese et al, 2010) N-isopropylacrylamide-butylmethacrylate (Tsuda et al, 2004) and NIPAAm-MMA-phosphorylated HEMA (Thomas et al, 2010) were successfully used as a substrate for cell sheet harvesting. Thermoresponsive copolymer NGMA was clearly identified as potential substrate for cell culture harvesting system for generating 3D synthetic tissue. NGMA was synthesized by solution polymerization followed by the coating on TCPS surfaces by solution casting method. Copolymerisation of PIPAAm with the hydrophobic monomer glycidylmethacrylate results in a decrease of LCST. Thermoresponsive copolymer NMMA was also reported to be synthesized and coated by the same methodology mentioned above and proved to be an ideal thermoresponsive substrate with good cytocompatibility for cell culture and tissue reconstruction. Hydrophobic monomer n butylmethacrylate (BMA) has been copolymerized with PNIPAAm to reduce the LCST of NBMA inorder to modulate the cell adhesion/detachment from culture dishes and revealed to be an efficient substrate for cell sheet engineering. Poly (N-vinylcaprolactum-co- N- isopropylacrylamide) PNVCL-co-PNIPAAm grafted on TCPS dishes by EB irradiation were efficiently applied to detach viable cell sheets from culture surfaces (Lim et al, 2007).

The spontaneous recovery of cell sheet is important for maintaining the viability of retrieved cell sheets. PNIPAAm grafted onto porous membranes facilitate the acceleration of cell sheet detachment by providing rapid water movement between the interface of cell sheets and membrane surfaces (Kwon et al, 2000a). Another method for the acceleration of cell sheet detachment is by cografting of a hydrophilic polymer Polyethylene glycol (PEG) with the thermoresponsive polymer PNIPAAm (Kwon et al, 2000b). Copolymerisation with 2-carboxyisopropylacrylamide (CIPAAm), [P(IPAAm-co-CIPAAm)] grafted surface accelerates the cell detachment process because of the presence of hydrophilic carboxyl group (Ebara et al, 2003).

7. Biomolecule immobilizing thermoresponsive substrates

Biomolecule immobilizing thermoresponsive cell culture dishes are known to be the next generation thermoresponsive substrates in cell sheet engineering (Jun and Okano, 2010). Regulation of cellular metabolisms and functions in culture are important aspects in cell sheet engineering. The simple approach to enhance the cellular activities are by immobilization or coating of bioactive compounds such as collagen, fibrin, elastin and arginine–glycine–aspartic acid (RGD) containing peptides on the cell culture substrate (Ebara et al, 2004). Anchoring of these bioactive compounds to this thermoresponsive substrate through chemical bonds is expected to increase the stability of the modified surface to a prolonged period. The interactions of these biomolecule ligands and cell membrane receptors have an important role in cell spreading, proliferation, differentiation, and signal transduction. This can be achieved either through coating or by the use of coupling agents or else by copolymerizing with an analogue of Isopropylacrylamide.

Cell adherence and growth on the thermoresponsive substrate is improved by coating cell adhesion promoters such as collagen, laminin and fibrin (Moran et al, 2007). But repeated washing will remove the coating of biomolecules. Immobilization is the process which helps to increase the stability and make possible their repeated or continued use.

Copolymerizing with an analogue of isopropylacrylamide, 2-carboxyisopropylacrylamide (CIPAAm) which has a carboxylate side chain that favours the immobilization of bioactive
molecules onto thermoresponsive substrates. The synthetic cell adhesive peptide Arg-Gly-Asp (RGD) found in extracellular matrix proteins has been successfully immobilized onto the grafted polymer chains via the above mentioned method using the coupling agents 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride [EDC]. The cells adhered and spread well on these surface even in the absence of serum. Another method of immobilization is by the coupling of biotinylated biomolecules onto streptavidin immobilized thermoresponsive substrate by affinity binding without any coupling agents. The co-immobilisation of cell adhesive peptide RGDs and cell growth factor insulin facilitated the cell adhesion and cell proliferation respectively.

The epoxy ring opening of GMA moiety is well known for incorporating diverse type of biomolecules. The uniqueness of the thermoresponsive substrate such as N-isopropylacrylamide-co-glycidylmethacrylate is that, it facilitates the immobilization of biomolecules without any coupling agents by the presence of unreacted epoxy rings. The biomolecule immobilized surfaces facilitates cell adhesion, culture and harvest of cell sheets which enables serum free cell culture and enzyme free cell harvesting.

8. Supports for the transfer of cell sheet

A cell sheet carrier is a support which facilitates the transfer of retrieved cell sheets. An ideal material as a cell sheet carrier should possess the features like biocompatibility, surface pliability, mechanical strength, hydrophilicity, presence of surface reactive groups which enable easy modification etc. Polyvinylidene fluoride membranes in the form of annular ring, fibrin gel coated membranes are some of the systems which have been used till today. Polyion complex gels are further developed as cell sheet carriers (Tang et al, 2007) but possess limited mechanical strength and have application difficulties. A further innovative development in this field is the cell culture substrate with combined properties of thermoresponsiveness and cell sheet carrier tool. Modified over head projection transparency sheet based on polyethyleneterephthalate coated with thermoresponsive N-isopropylacrylamide-Co-glycidylmethacrylate is reported to be an efficient cell culture substrate as well as a cell sheet carrier tool (Joseph et al, 2010). The study demonstrated that a simple modification of commercially available PET sheets by hydrolysis followed by coating of thermoresponsive NGMA forms a biocompatible substrate for scaffold free cell sheets as well as a cell sheet carrier tool.

9. Clinical applications of cell sheet engineering

Cell sheet engineering favours the formation of scaffold free transplantable three dimensional tissues from thermoresponsive cell culture substrate. This technology has been used in corneal surface reconstruction, myocardial tissue reconstruction, regeneration of damaged periodontal tissue, treatment of oesophageal ulceration, treatment for type 1 diabetes etc (Elloumi-Hannachi et al, 2010). Some of the clinical applications reported till dates are reported below. This technology in corneal surface reconstruction has been successfully applied to the patients suffering from unilateral or bilateral corneal stem cell deficiencies due to alkali burns or Stevens Johnson syndrome. These reconstructed corneal surfaces are able to restore the vision. Cell sheet technology for the treatment of oesophageal ulceration enhances the wound healing and reduces the host inflammatory responses. This is reported to be the first clinical case in the world which is applied to endoscopy with
successful wound healing and improved post operative quality of life. Transplantation
using cell sheets derived from periodontal ligament is reported to be useful for the
regeneration of damaged periodontal tissue. Cell sheet technology using pancreatic islets
has been used for the treatment of type1 diabetes. Another clinical application of cell sheet
engineering is its use in the treatment for dilated cardiomyopathy and cardiovascular tissue
repair by myocardial tissue reconstruction. This smart culture surfaces have already been
used in clinical trials and thus it offers a new frontier in the biomedical field.

10. References

Abraham, T. N., V. Raj, T. Prasad, P. R. Anil Kumar, K. Sreenivasan and T. V. Kumary
(2010). A novel thermoresponsive graft copolymer containing phosphorylated
HEMA for generating detachable cell layers. *Journal of Applied Polymer Science*

Akiyama, Y., A. Kikuchi, M. Yamato and T. Okano (2004). Ultrathin poly(N-
isopropylacrylamide) grafted layer on polystyrene surfaces for cell

characterization of poly(N-isopropylacrylamide) grafted tissue culture polystyrene
by electron beam irradiation, using atomic force microscopy, and X-ray

Anil Kumar, P. R., K. Sreenivasan and T. V. Kumary (2007). Alternate method for grafting
thermoresponsive polymer for transferring in vitro cell sheet structures. *Journal of

detachment affects the extracellular matrix: a surface science study comparing
1-13.

da Silva, R. M., J. F. Mano and R. L. Reis (2007). Smart thermoresponsive coatings and
surfaces for tissue engineering: switching cell-material boundaries. *Trends
Biotecnol* 25(12): 577-583.

Copolymerization of 2-carboxyisopropylacrylamide with N-isopropylacrylamide
accelerates cell detachment from grafted surfaces by reducing temperature.

of cell-adhesive peptides to temperature-responsive surfaces facilitates both serum-

nanotechnology for scaffold-free tissue reconstruction with clinical applications in

recovery by co-grafting of PEG with PIPAAm onto porous cell culture membranes.
Biomaterials 24(7): 1223-1232.

Gene-Silencing for Treatment of Cardiovascular Diseases

A. Nolte, M. Schneider, T. Walker and H. P. Wendel
Clinical Research Laboratory, Department of Congenital and Paediatric Cardiac Surgery, University Children’s Hospital Tuebingen, Tuebingen Germany

1. Introduction

In the last decade, great advances in RNA biology have been achieved. Micro- and short-interfering RNAs were once thought to be degradation products of larger RNA molecules. With the knowledge of today we know that they represent independent classes of small noncoding (~ 20-30 nt) RNAs regulating various cellular processes across the eukaryotes. The first miRNA lin4 was discovered in the Nematode C. elegans in the year 1993, when Lee et al. [1] demonstrated that this transcript works as an endogenous regulator of genes that control developmental timing. Five years later Fire et al. [2] showed the ability of exogenous double stranded RNA to targeted posttranscriptional gene silencing, which recognizes each target by Watson-Crick base pairing. This scientific breakthrough was awarded with the novel price 2007.

The RNA interference (RNAi) is a naturally happening catalytic process, offering the possibility to silence every pathological interesting gene which is defective expressed in a given disease. Thus it will give new approaches in the development and applications of siRNA-based therapeutics.

Since cardiovascular diseases (CVDs) are the main cause of mortality and morbidity in the Western world this chapter will discuss possible applications of si- and miRNA-based therapeutics and delivery systems with special regard to atherosclerosis, ischemic heart-disease and hypertension.

2. Molecular mechanism of RNAi

2.1 siRNA pathway

SiRNAs are ~ 20-25 nt regulatory molecules that play a primitive role in the defence against any foreign nucleic acid molecule derived from viruses or transposons to preserve genome integrity. This hypothesis is supported by a study that demonstrates the passive uptake of siRNAs trough a membrane receptor protein called Systemic RNA Interference – Defective 1 (SID-1) [3].

RNAi is induced by linear, long perfectly complementary dsRNA which is directly introduced in the cytoplasm or is taken up by the environment [4]. First the dsRNA is processed by the RNase III-type endonuclease Dicer in 21-23 bp long siRNA duplexes that have 3’overhangs and 5’ phosphates. In general Dicer possesses six domains including DExH
Helicase, DUF283, PAZ, RNase IIIa, RNase IIIb and RNA Binding Domain (RBD). The PAZ domain (Piwi, Argonaute, Zwille) binds to the 3'-nt overhangs of the cleaved RNA substrate while RBD recognizes duplex structures of RNA [5]. The next step is the incorporation of the duplex siRNAs into the nuclease-containing multiprotein complex RISC (RNA-induced silencing complex). The duplex is then unwound by the helicase activity (PAZ-domain) of the nuclease Ago2 which activates RISC. The unwinding process starts from the end of the siRNA with lower thermal energy. One strand called guide strand remains within the RISC, while the passenger strand is degraded by exonucleases [6]. The 5' end of the guide strand contains the seed region between the ribonucleotides at position 2-7 and are responsible for governing the RISC to its binding to target sequences [7]. Then the guide strand activates the RNase activity (PIWI domain) of Ago 2 which cleaves the complementary target mRNA. As result of these two unprotected mRNA ends are built, that are fast degraded by intracellular nucleases. This gene silencing by mRNA cleavage is an effective and catalytic process due to the fact that the activated RISC is freed after one round and is ready for further destruction of target mRNAs resulting in target repression [8] (See also Figure 1).

Fig. 1. Mechanism of RNA interference (RNAi) in mammalian systems

2.2 miRNA pathway
MiRNAs are ~22 nt long single-stranded RNAs with endogenous distinct that serve as regulators for proteins that repress gene expression [9]. Initially their precursors (pri-
miRNAs) are transcribed by the RNA polymerase II as single-stranded transcript that contain a local hairpin structure and also possess 5’ cap and poly-A tail [10]. Secondly the pri-miRNAs are processed by the Drosha/Pasha complex (RNase III) and they are excised as stem-loops (pre-miRNAs). Some pri-miRNAs are originated from introns and are called mitrons. They are generated by the pre-miRNA splicing machinery rather than by Drosha [11]. The pre-miRNA are then transported out of the nucleus in the cytoplasm and this transport is mediated by Exportin 5 and Ran-GTPase [12]. Subsequently the pre-miRNA is processed and shortened by Dicer to generate imperfectly-matched ds miRNA. Then the duplex miRNA is loaded on the Ago2-RISC complex and in case of imperfect sequence complementary the passenger strand is unwound by Ago2 producing a mature miRNA that is bound to active RISC.

The repression of the mature miRNA to genetic processes is made on two different levels: it recognizes and binds the 3’UTR of target mRNAs blocking translation or this binding results in mRNA degradation in special processing bodies, termed p-bodies [13, 14] (See also Figure 1).

3. Delivery systems and designs of siRNA- and miRNA-based therapeutics

According to its large molecular weight (~13 kDa) and high content of anionic charge (~40 negative phosphate charge), unmodified naked siRNA does not freely enter cell membranes. Therefore delivery systems are needed to give an access for the nucleic acids to its intracellular sites of actions since all other contributing parts of the RNAi based machinery are provided by the target cell / target tissue [39, 75]. Another critical hurdle to overcome is the low biological stability of nucleic acids under physiological conditions, which is the topic of the following passage.

3.1 Chemical modifications of siRNA: improving biological stability

Both single-stranded nucleic acids and double-stranded nucleic acids are relatively fast degraded trough nuclease attack if they are applied in unmodified and naked form. These finding indicates that they have short half-lives in blood and serum in vivo because of the activity of endo-and exonucleases [15]. To avoid the rapidly degradation there have been made efforts in the chemical modifications of siRNAs including strategies that improve the cellular uptake due to the conjugation with cholesterol, peptides, aptamers or antibodies.

These chemical modifications mainly focus on the backbone, base or sugar of the RNA. One strategy is to modify the 2’-position of the ribose enhancing duplex stability (Tm) and nuclease resistance of the phosphodiester bond between the nucleotides against hydrolysis. The 2’O-Methyl-modification (2’OMe) is a naturally found RNA which is untoxic but can implement the potency of the siRNA. To undergo this effect an alternation of 2’OMe with RNA or other 2’modifications can be used so that siRNA function and nuclease stability is preserved [16,17]. Another well studied 2’ modification is the 2’fluoro (2’-F) modification at pyrimidine positions which show compliance with the siRNA potency and stabilisation of the duplex against nuclease degradation in vitro [18] and in vivo [19]. Morrissey et al [20] demonstrated that a combination of 2’OMe purines with 2’-F pyrimidines can generate RNA duplexes that are highly stable in serum and have good in vivo performance. The modification of internucleotide phosphate linkage through the replacement of the non-bridging oxygen with sulfur is also an efficient approach to
improve nuclease stability without reducing the potency of siRNA. This was revealed through several studies [21-23]. Furthermore the covalent conjugation of siRNA with various chemical groups can direct cell uptake and alter biodistribution. The attachment of hydrophobic ligands like cholesterol is a prominent example to extend serum lifetime. Soutschek et al. demonstrated in a mice model that i.v. administration of anti-ApoB siRNA that contained two 2′OMe RNA residues, phosphorthioate 3′-end modification and a cholesterol group resulted in silencing of the apolipoprotein B gene and reduced total cholesterol and plasma levels of apoB protein [24]. These data suggest that chemical modifications are a useful tool to improve stability and cellular uptake of siRNAs in general.

3.2 Off-targets: activation of the innate immune system
In the design and selection of a siRNA sequence their effect on innate immune system has also to be considered. It have been shown that the introduction of too long ds RNA molecules (>30 nt) can initiate an antiviral IFN-response of the cell or can activate a cellular pathway that involves the serin/threonine protein kinase PKR [25, 26]. A suppression of these effects could be the use of smaller (21-23 nt) siRNAs and additional in vitro tests or BLAST search of desired siRNA sequences to avoid further immune responses. SiRNAs have also the potential to interfere with the innate immune system due to the activation of Toll-like receptors (TLRs). Especially TLR 3, 7 and 8 are expressed in endosomal compartments and exposure to these receptors is affected by strength of the entry of synthetic RNA enters the cell. TLR 3 recognizes motifs in ssRNA and TLR 7 and 8 notice motifs in dsRNA. TLR 7 is binding favourable to GU-rich sequences and selecting of sequences that are not recognized by this receptor will help to solve this problem [13]. Moreover it has been demonstrated that the use of chemical modification like 2′OMe can prevent the detection of siRNAs by the immune system. The study of Judge et al. showed that incorporation of two or three 2′OMe residues in a siRNA duplex can be enough to evade immune detection [27]. Another category of off-targets are the cross-reactions between the si- and mi-RNA-pathway. If one of the siRNA strands have partly complementary regions with the 3′UTR of not targeted mRNA it can result in imperfect base-pairing of guide strand and “target” strand. This will end in translational repression or exonucleolytic degradation in a way similar like miRNA silencing [28]. This mismatch effect would be avoided if the seed-region of the guide strand between the 2 and 8 nucleotid position (5′end) is fully complementary with the target mRNA sequence. Thus homology screenings of seed regions of siRNA in the 3′UTR of all interfering and target genes would be useful [29].

3.3 In vivo delivery systems
Beyond the importance of effective design of siRNA to achieve specific and potent target gene silencing, the therapeutic use of siRNA need reliable delivery into tissues and target cells. Due to the fact that small RNA molecules like si- and miRNA have a strong anionic charge of their backbone consisting of phosphodiesters and they have a considerable molecular weight it is not possible that they can simply enter the cell membrane by passive diffusion. This lead to the development of two main methods of delivery including viral and nonviral strategies, which have been already successfully applied in vitro and in vivo. Although viral transfection in patients is regarded very critically, the next paragraph should give a small overview of this technique.
3.3.1 Viral delivery systems

Viral vectors commonly consist of nucleic acids (shRNAs or miRNA mimics) that are incorporated in the backbone of the virus genome and are induced through a Pol II or Pol III promoter. They are surrounded by a viral capsid of proteins that usually interact with ECM-molecules to enter the cell by membrane fusion or receptor binding [31]. The gene transfer with viral vectors is a highly effective method because only one application is able to silence the target gene for a long time \textit{in vivo} [32]. But despite the great potency of viral vectors for delivery, one has to consider that threats like host immune responses, potential oncogen and mutagen properties can occur. The common used viral vectors are adenovirus, adenovirus-associated virus (AAV) and retrovirus [31]. Especially lentiviral vectors, a class of retroviruses show great potential of infecting a wide variety of non-dividing and dividing cells, stable integration in host genome, and results in long term expression of the transgene [32]. This kind of vector are of great interest for the injection in non-dividing cells like neurons and are suitable in the therapy of brain specific diseases or expression of shRNAs targeting disease associated genes [33, 34]. A possible target of shsiRNA could be in the case of a neurodegenerative disease like alzheimer, the γ-secretase BACE 1 which generates the toxic amyloid β-peptid. This was demonstrated in a Alzheimer mouse model with reduction of endogenous levels of BACE1 by the use of a lentiviral vector expressing shRNA [35]. Adenoviral vectors have also been used for delivery of a shRNA in the brain directed against the mRNA expressing the polyQ-harbouring SCA-1 encoding transcript of spinocerebellar ataxia type 1 [36].

Another field of treatment would be chronic viral infections like chronic hepatitis b that need long-term treatment. Kim et al. demonstrated the \textit{in vitro} lentivirus-mediated delivery of shRNA against HBx can effectively suppress the replication of HBV and reduce HBV covalently closed circular DNA [37]. Nevertheless, the safety issue remains a parameter in the decision in the use of a viral vector.

3.3.2 Nonviral delivery systems

There have been made many investigations for the use of nonviral delivery systems, including formulations like cationic polymers, cationic lipids, antibodies, conjugates or naked siRNA. The first consideration of the choice of a delivery strategy must be if a local or systemic administration is needed for the intended disease target.
Systemic delivery strategies in vivo

Cationic delivery systems

All cationic vectors share the ability to form complexes with the polyanionic nucleic acids through electrostatic interactions. Another possibility is the formation of nanoparticles in which the nucleic acid is entrapped within the particle through ionic interactions. The advantage of these formulations is that the siRNAs are not reachable for nucleases until it reaches its destination through vesicular transport (endocytosis and/or macropinocytosis). Nanoparticles and complexes must have a limited size of 100 nm to be taken up by cells and to suppress renal excretion [38].

Cationic polymer delivery systems of siRNA

Cationic polymers that have been applied include both natural (e.g., acetocollagen, chitosan) and synthetic (e.g., polyethylenimine). Polyethylenimine (PEI) is one of the best investigated polymers for nucleic acid delivery [39]. The polymer is linear or branched and has high cationic charge density. The PEI-siRNA complexes are endocytosed in the cell through electrostatic interactions where it escapes the endosome through the “proton-sponge-effect”. PEI has the ability to accept protons which results in a buffering-effect in the vesicular system and a subsequent influx of Cl- and water leading to an osmotic release of the complexes in the cytoplasm [40]. PEI is available in different weights, but low-molecular PEI is favourable because high molecular weight is highly toxic [41]. The linear 22kDa jetPEI was successfully used in a antiviral therapy of guinea pigs against a lethal Ebola virus [42]. PEI-siRNA complexes have also been effective applied as an antiviral agent in a murine model of influenza infection [43]. PEI-siRNA complexes have also been efficient targeted against many proteins like HER2 [44], VEGF [45] and many more [39].

Acetocollagen is a natural polymer which is produced through pepsin treatment of type I collagen of calf dermis [46]. Acetocollagen/siRNA-mediated targeting have been demonstrated in the treatment of prostate and pancreatic cancer as well as virus replication [47, 48, 49]. Another well-tolerated natural polymer is chitosan that builds cationic complexes with siRNAs. Howard et al. showed effective RNAi delivery in epithelial cells in the lung of mice through the intrasal application of transgenic enhanced green fluorescent protein (EGFP) [50].

Cationic liposomal delivery systems

Cationic liposomes and lipoplexes have been successfully applied for in vitro and in vivo delivery of siRNA. Liposomes are vesicels that can improve drug delivery through their fusion with cell membranes and they consist of a soluable compartment enclosed in a bilayer of phosholipids in which polar drugs can be entrapped. Lipoplexes are particles that are built through a complex formation of nucleic acids and lipids. The advantage of lipid formulations is the increase of siRNA stability in serum and the protection to overcome renal excretion, but unfortunately cationic liposomes can interfere with proteins like lipoproteins or serum proteins which can result in off effects as aggregation. For in vitro use there are many commercial available formulations like Oligofectamine, Lipofectamine (Invitrogen), RNAifect (Qiagen). An example of liposomes is SNALP (stable nucleic acid lipid particles) that have been efficient used in the in vivo silencing of the apoB gene in mice and primates [51]. The silencing effect of only one intravenous dose of 2.5 mg per kg SNALP-formulated siRNA lasted for 11 days and showed a reduction of 90% of the apoB mRNA.
Local delivery strategies in vivo

Especially the local application of siRNA at site-specific delivery targets offers the possibility to reduce the doses of use as well as preventing the threat of systemic off targets.

Intracocular delivery

Up to now it is possible to treat wet-age related macular degeneration (AMD) with si-RNA based therapeutics. This disease affects blood vessels behind the retina that show a overgrowth which can cause a loss of vision. A human clinical study with complete status show the potency of VEGF-targeted siRNA Bevasiranib (Acuity Pharmaceuticals) to reduce neovascularisation and is also thought for the treatment of diabetic macular oedema (clinical status: complete). A mouse model in which Bevasiranib (Cand 5) was used also showed downregulation of VEGF after ocular injection [52]. The Drug Ranibizumap (Sirna-027/AGN211745) which was developed by the Merck-Sirna Therapeutics is also already under complete status in the treatment of AMD. Another siRNA called RTP-801i from Silence Therapeutics is also under clinical investigation for AMD and renal injury use.

Intratumoral delivery

Calando Pharmaceuticals has induced a now active (not recruiting) status of a clinical trial in which the siRNA CALLAA-01 is encapsulated in the polymer cyclodextrin to built particles that are linked with transferrin. This siRNA is directed against a subunit of the ribonucleotide reductase to stop the synthesis of DNA required for growth within solid tumors. This is the first clinical attempt of connecting a siRNA particle with a receptor that is highly expressed on cancer cells, like transferrin to facilitate the uptake. Another example is the Atu-027 siRNA (Silence Therapeutics) which is thought to be effective in the treatment of gastrointestinal cancer that has achieved the status recruiting.

Intranasal delivery

Intranasal application of formulated siRNA is resulting in effective gene silencing in the lung. This has great benefit in the treatment of pulmonary diseases. Alnylam Pharmaceuticals have developed the first antiviral siRNA ALN-RSV01 which is directed against the respiratory syntical virus through the silencing of the nucleocapsid N-gene of the virus [75].

Other clinical trials are summed up in the following table

<table>
<thead>
<tr>
<th>siRNA/ miRNA</th>
<th>Disease</th>
<th>Clinical Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>TD101</td>
<td>Pachyonychia congenita</td>
<td>Completed</td>
</tr>
<tr>
<td>PRO-040201</td>
<td>Hypercholesterolemia</td>
<td>Recruiting</td>
</tr>
<tr>
<td>Anti-miRNA SPC3649</td>
<td>Chronic Hepatitis C</td>
<td>Recruiting</td>
</tr>
</tbody>
</table>

Table 2. Clinical trials (a selection)

4. Therapeutical applications of si- and miRNAs with focus on CVDs

The treatment of CVDs with si- and mi-RNA based therapeutics is a very novel strategy with high potential for clinical applications.

4.1 Possible targets of atherosclerosis therapy

Atherosclerosis is a chronic, multifactorial, smoldering inflammatory disease of medium sized and large conductive arteries characterized by lipid-fuelled lesions. The major players
in the development of the disease are endothelial cells, monocytes, leukocytes and intimal smooth muscle cells [53]. Atherosclerotic lesions start to develop under an intact but activated, dysfunctional and partly leaky endothelium. Through the sites of defective endothelium especially lipoprotein particles can accumulate in the vessel wall where they can undergo modifications like oxidations. OxLDL is highly proatherogenic and is generated by myeloperoxidase, 15-lipoxygenase (or 12/15-LO), and/or nitric oxide synthase (NOS) [53]. Especially the 12-15-LO is associated with cellular growth, migration, adhesion, and inflammatory gene expression in monocytes/macrophages, endothelial cells and vascular smooth muscle cells (VSMC). Li et al. demonstrated that shRNA was able to knockdown 12/15-LO in mouse macrophages and also in rat and mouse VSMCs. The knockdown of 12/15-LO had also functional effects which was showed through reduced monocyte-chemoattractant protein-1 (MCP-1) expression in a differentiated mouse monocyte line as well as reduced cellular adhesion and fibronectin expression in VSMCs [54]. Making 12/15-LO an interesting target of atherosclerotic RNAi based prevention. Endothelium is activated through atherogenic stimuli like oxLDL and cytokines, that induces expression of adhesion molecules like VCAM-1, ICAM-1 and selectins like P- and E-selectin which have proven to be important in atherosclerotic lesion development [55, 56, 57]. These adhesion molecules can contribute to the recruitment of monocytes as well as leukocytes and VSMCs. During the development of atherosclerosis and neointimal hyperplasia a transformation of VSMCs in the media from a contractile into a synthetic phenotype is ongoing and after the arrival of VSMCs in the intima of the arterial wall they begin to generate extracellular matrix, resulting in the formation of intimal lesions. Petersen et al. isolated VSMCs from the aorta of C57BL/6 mice and transfected them with siRNA targeting VCAM-1. In a migration assay they revealed that with the treatment of VCAM-1 siRNA the number of migrated VSMCs was significant reduced [58]. These findings indicate that VCAM-1 is necessary for the migration of VSMCs in the intima and VCAM-1 siRNA expression is an eventually potent approach to prevent and treat atherosclerosis and restenosis. Another possible target of atherosclerotic therapy is the inhibition of leukocyte entry to lesion areas to stop inflammatory progression. Pluvinet et al demonstrated that efficient blockage of the CD40-CD154 signaling by RNAi-mediated silencing of human CD40 expression on vascular endothelial cells leads to inhibition of VCAM-1, ICAM-1 and E-selectin expression and to a concomitant reduction of leukocyte adherence on these cells [59]. This signalling way is very interesting because the CD40-CD154 interaction also triggers matrix metalloproteinase (MMP) expression and these enzymes destabilize lipid-rich core of plaques which can cause thrombosis. SMCs are also responsible for the fibrin cap production which contributes also to neointimal thickening after arterial injury which can lead to restenosis. The discoidin domain receptor 2 (DDR2) plays potential roles in the regulation of collagen turnover mediated by VSMCs in atherosclerosis. DDR 1 and DDR 2 are nonintegrin receptors of collagen [60]. Shyu et al applied in a balloon injured rat model the DDR2 siRNA for attenuating the neointimal formation and decreasing the MMP2 protein labeling in vitro and in vivo [61]. Another study also showed successful in vivo transplantation of coated stents with a cationized pullulan-based hydrogel loaded with MMP2 siRNA. San Juan et al demonstrated in this study an uptake of siRNA into the arterial wall and a decrease of pro-MMP2 activity [62]. This stent coating technology could be a auspicious therapeutic approach for prevention of restenosis.
4.2 Possible targets of hypertension therapy
Hypertension also represents a severe risk factor for many chronic CVDs. The use of cationic liposomal gene delivery vectors like DOTAP could be one possible strategy to reduce blood pressure. This finding was recently confirmed by Arnold et al., who showed that a single dose of 1mg/kg i.v. of siRNA-DOTAP (N-[1-(2,3-dioleoyloxy)]-N-N-N trimethyl ammonium propane) lipoplexes lead to the selective inhibition of β1-adrenoreceptor expression and reduced blood pressure lasting for 12 days [63]. The reduced blood pressure was also not greater if the β1-adrenoreceptor were blocked by β-blockers.

Sun et al. also used RNAi to inhibit α1D-adrenergic receptor gene in rat VSMCs and the therapeutic implications of this treatment are of great interest, for the reason that pharmacologic blockage of α1-ARs is a commonly used treatment for hypertension [64]. A other area of gene targeting in hypertension are the blockage of receptors that are affected by potent vasoconstrictors like Angiotensin II (Ang II). Ang II exerts its physiological effects by activating multiple subtypes of its receptor such as AT1a-, AT1-b and AT2-receptors. It regulates diverse functions of the cardiovascular system as increases in blood pressure, extracellular fluid volume, hormone secretion, stimulation of sympathetic nerve activity, damping of baroreflexes and vascular and cardiac remodelling [65, 66]. Mostly the effects are mediated through AT1R. Vázquez et al. used AT147siRNA to silence the AT1a receptor for up to 7 days, with decrease of Ang II binding to cells that were transfected [67]. Thus this target will be an interesting field in CVD therapy.

4.3 Possible targets of ischemic heart-disease (IHD) therapy
The therapeutic opportunities for the treatment of IHD range from medical therapy achieving to decrease myocardial oxygen consumption and increase coronary flow to revascularization. Revascularization is done through coronary artery bypass grafting (CABG) or percutaneous coronary angioplasty (PCI) in most cases with stent positioning [68].

Through hypoxia the hypoxia inducible factor-1 transcriptional factor (HIF1-TF) can activate several angiogenic genes. HIF1-TF is naturally degraded by prolyl hydroxylase-2 (PHD2). Huang et al. imaged the biological role of shRNA therapy for improving cardiac function. Inhibition of PH2D by shRNA led to significant improvement in angiogenesis and contractility by in vivo and in vitro experiments and this process can be followed by molecular imaging [69]. Markkanen et al. reviews also that combined use of growth-factors or of factors that are capable of up-regulating other factors (e.g. HIF-1) will improve collateral vessel growth in case of IHD [70]. The potential use of miRNAs could also be a strategy for IHD treatment. MiRNAs contribute in the regulation of angiogenesis. Especially miR-126 can regulate angiogenesis and vascular integrity due to two recent studies [71, 72]. MiR-126 was demonstrated to be one of the most expressed miRNAs in cardiovascular tissue. Wang et al. generated miR-126 null mice that showed decreased sprouting potential of endothelial cells in vitro and also defective response to angiogenic factors in vivo [72]. These mice also showed decreased vascularization of infarcted myocardium, stronger fibrosis and loss of functional myocardium and were more prone to cardiac rupture. The search of mir-126 targets identified Spred-1, which is an negative regulator of the MAP kinase pathway that signals the pathway of angiogenic regulators like VEGF [68]. Thus an upregulation of miR-126 could be effective in the repression of antiangiogenesis. Another study by Fasanaro et al. also revealed a hypoxia induced upregulation of miR-210.
in endothelial cells [73]. They used endothelial cells that were cultured under oxygen deprivation, which were derived from human, umbilical veins. It was shown that the overexpression of miR-210 stimulated angiogenesis in mormoxic endothelial cells, while miR-210 blockage inhibited it [73, 68]. A target of miR-210 is Ephrin-A3 which is a regulator of angiogenesis and VEGF signaling.

5. Conclusions and future perspectives

Since CVDs are the leading cause of morbidity and mortality in the world, siRNA and miRNA-based therapeutics represent a new approach to treat CVDs. Due to the fact, that RNAi technology has shown a fast development from the research level to human clinical trials as an effective gene-silencing method since its discovery in 1998, it shows great advantages for use in routine clinical practice as an adjuvance of existing therapies. The challenging hurdle remains the delivery of nucleic acids \textit{in vivo} including the improvement of biological properties such as delivery efficacy, cellular uptake and well pharmacokinetics to achieve drug release to the wished target cell type. But there have been already made great efforts in the establishment of siRNA delivery methods like cationic polymer-mediated siRNA delivery, targeted siRNA delivery and conjugation or chemical modifications of siRNAs. Thus ongoing research and practical use will improve the safety issue in general making RNAi-based therapeutics a new class of drugs with high potential, especially in the treatment of a wide field of diseases.

6. References

[26] Schlee M et al. SiRNA and isRNA: two edges of one sword. Mol. Ther. 2006; 14: 463-70

Gene-Silencing for Treatment of Cardiovascular Diseases

Hydrodynamic 3D Culture for Bone Tissue Engineering

Daijiang Du, Takashi Ushida and Katsuko S Furukawa

Department of Bioengineering, Department of Mechanical Engineering,
School of Engineering, University of Tokyo
Japan

1. Introduction

Bone tissue engineering provided a promising approach for treatment of large bone defects resulting from maladies such as birth defects, trauma, or tumor resection. In vitro culture of a porous scaffold seeded with osteoprogenitor cells may enhance its bone regeneration potential. In this chapter, we describe the design of a novel perfusion bioreactor system with oscillatory flow for cultivating multiple 3D cellular constructs with clinical applicable size. It can perfuse culture media in a small volume repeatedly throughout the scaffolds. The mixing effect of the oscillatory flow may enhance the uniform growth of cells in the scaffold in prolonged culture in vitro. The system was characterized. Mouse osteoblast-like cells, MC 3T3-E1, were dynamically seeded and cultured in large porous ceramic β-tricalcium phosphate (β-TCP) scaffolds by the oscillatory perfusion system, and then the cell growth within the scaffolds was evaluated by fluorescent study. The oscillatory perfusion system could be a simple and effective bioreactor for bone tissue engineering.

2. Bone regeneration

Although bone tissue is able to regenerate after injuries and can remodel in relation to local stresses, treatment of large bone defects resulting from maladies such as birth defects, trauma, or tumor resection has produced an extremely large clinical demand for bone graft well distributed across the population. Autologous bone grafts have been considered the gold standard for augmenting bone regeneration. However, there are limited sites where bone may be harvested without loss of function (Brown and Cruess, 1982; Enneking et al 1980). Autografts are less effective in irregularly shaped defects and may be resorbed prior to complete healing. Furthermore, autografts harvested from the iliac crest of the hip are associated with a 10% complication rate including infection, fracture, pain, paresthesia, nerve injury, and donor-site morbidity (Gitelise and Saiz, 2002; Younger and Chapman, 1989). Allografts derived from cadavers are another commonly used bone graft material. However, disease transmission and immunologic rejection are serious concerns with unprocessed allografts, and processed allografts, such as demineralized bone matrix, lack bone growth inducing factors necessary for efficacy. Xenografts, or bone grafts obtained from different species, are also a poor option due to the danger of disease transmission or immunological rejection (Erbe et al, 2001).
2.1 In vitro bone tissue engineering

Tissue engineering may provide functional substitutes of native tissues, to serve as grafts for implantation (Langer and Vacanti, 1993) and physiologically relevant models for controlled studies of cell function and tissue development. In one of the most typical approaches, 3D structures are generated by the association of osteoprogenitor cells (autologous or allogeneic) with porous scaffolds. This may enhance the bone regeneration potential of the graft, because the seeded cells are not only a cell source for regeneration, but can also coat the scaffold surface with their osteoinductive extracellular matrix even if they did not survive after implantation of the biomaterial (Holtorf et al, 2005; Goldstein et al, 2001; Sikavitsas et al, 2003).

But in conventional static culture, nutrients and oxygen transported through a diffusion process could favor cells to live within 1 millimeter from the outer and upper surface of the scaffold, with only dead cells in the center of the scaffolds after an extended period of time (Figure 1A).

Fig. 1. Calcein-AM/PI double staining of mouse osteoblast-like cells after 6 days of culture on the porous ceramic scaffolds under fluorescent stereomicroscope (middle section view). A) Static culture: living shell of cells with a dead center; B) Perfusion culture by oscillatory fluid flow: living cells distribute uniformly throughout the scaffold. Dead cells were stained red and living cells green. Scale bar=2mm

2.1.1 Development and evaluation of an oscillatory perfusion bioreactor for bone regeneration in vitro

Thus various bioreactors have been designed and developed for in vitro culture of 3D cell-scaffold constructs under conditions that support better nutrition of cells, possibly combined with the application of mechanical forces to direct cellular activity and phenotype. Spinner flasks and rotating wall vessel (RWV) bioreactors are two kinds of most basic bioreactors applied for bone tissue engineering, as shown in Figure 2 A-B. In the spinner flasks, scaffolds are attached to the needles hanging from the lid of the flask, and convective forces generated by a magnetic stirrer bar allow continuous mixing of the media surrounding the scaffolds[10]. Medium stirring enhances external mass-transfer but also generates turbulent eddies, which could be detrimental for the development of the tissue. In the rotating wall vessel reactors, the vessel walls are rotated at a rate that enables the drag force (Fd), centrifugal force (Fc) and net gravitational force (G) on the construct to be balanced; the construct thus
remains in a state of free-fall through the culture medium (Sikavitsas et al., 2002; Botchwey et al., 2001; Unsworth et al., 1998) also presenting a low fluid shear stress. The microgravity state may present some advantages because it avoids cell deposition, and at the same time promotes cellular interactions (Botchwey et al., 2001). However, it is also known that microgravity is deleterious for bone, leading often to losses in total bone mass (Sinha et al., 2002). A common aspect of both systems was that the cells were not homogeneously distributed throughout the scaffolds structure in the two systems (Skavitsas et al., 2002) probably due to the inefficient internal mass-transfer while the external limitation reduced.

Direct perfusion bioreactors have been applied to fabricate uniform artificial bone grafts in vitro (Figure 2C).

To reduce mass transfer limitations both at the construct periphery and within its internal pores, the media is directly conveyed throughout the interconnected pores to continuously introduce nutrients and remove wastes. Direct perfusion bioreactors have been shown to enhance early cell proliferation, osteogenic differentiation, and mineralized matrix production of bone marrow stromal osteoblasts seeded in three-dimensional scaffolds (Goldstein et al., 2001; Cartmell et al., 2003; Wang et al., 2003; Meinel et al., 2004; Dolder et al., 2003; Bancroft et al., 2002; Sikavitsas et al., 2003; Porter et al., 2005; Holtorf et al., 2005; Botchwey et al., 2003). In addition to enhancing chemotransport by shear flow over bone cells attached to the scaffold surface, a perfusion system may also simulate the fluidic mechanical environment bone cells experience in vivo and elicit a flow-induced osteogenic response of the bone cells, as evidenced by increased activity of alkaline phosphatase (ALP), an early osteogenic differentiation marker (Pavalko et al., 1998; Kapir et al., 2003; Jessop et al., 2002; McAllister et al., 1999), and the expression of osteocalcin (Lan et al., 2003), osteopontin (Kreke et al., 2004; Kreke et al., 2005), and bone sialoprotein (Kreke et al., 2005). So perfusion bioreactors are very important tools for research on bone tissue engineering.
Most existing perfusion bioreactors have still some problems to be addressed: 1) the culture media circuit, the typical structure of them, includes multiple tubes and junctions, making them complicated, difficult to handle. The bubbles are also easy trapped and alter the flow field. 2) Cell seeding of scaffolds – that is, the dissemination of isolated cells within a scaffold – is the first step in establishing a 3D culture, and might play a crucial role in determining the progression of tissue formation (Vunjak-Novakovic et al., 1998). But the large volume of medium necessary for circulation does not allow for a small seeding volume required for efficient inoculation; therefore, to improve seeding efficiency, researchers prefer to seed cells into scaffolds outside the perfusion system and then transfer them to the system, significantly increasing the risk of contamination. 3) Growth factors are essential for tissue formation and play an important role in tissue engineering. Bone morphogenetic proteins (BMPs), transforming growth factor beta (TGFβ), fibroblast growth factors (FGFs), insulin growth factor I and II (IGF I/II), and platelet derived growth factor (PDGF) have been proposed for bone tissue engineering applications (Jadlowiec et al., 2003; Lind and Bunger, 2001; Yoon and Boden, 2002). Unfortunately, they are still very expensive now. So the large volume of medium required also made traditional perfusion cultures very costly when such kinds of expensive conditioning agents as well as valuable transfected cells or vectors are used. It also prevented the retention of newly synthesized extracellular matrix components or transfected gene products within the construct. In addition, it has been suggested that oscillatory fluid flow instead of unidirectional flow mimics the physiologic fluid flow profile observed in bone during mechanical loading and demonstrated to have beneficial effects on osteogenesis, such as increasing osteopontin and osteocalcin expression (Vance et al., 2002; Ponik et al., 2006; Wu et al., 2006; Li et al., 2004; You et al., 2000; You et al., 2001; Donahue et al., 2003; Batra et al., 2005; Qin et al., 2003).

We have designed and developed a compact oscillatory perfusion bioreactor recently. As shown in Figure 2D, the base of flow well was sealed with a 0.3-mm silicon film. The movement of the syringe back and forth was controlled by a continuous cycle syringe pump, consequently forcing the silicon film to move up and down, thus driving the media in the flow wells to perfuse up and down through the scaffolds in an oscillatory manner. Glass cloning rings were attached to the caps to enable the system to hold a limited volume (<500μm) of cell suspension during seeding for high seeding efficiency as well as enable conditioned culture in small volume. Because the syringe could be released from the pump easily, we were able to move only the syringe-connected chamber (without pump) onto a clean bench and change the medium just as one would do with a conventional 6-well plate. We have successfully fabricated a uniform tissue engineering bone with a clinical relevant size (10 mm in diameter, 8 mm in height) in only 1.5ml culture osteogenic media by this oscillatory perfusion bioreactor for prolonged period.

At first, the cellularity of the scaffold was evaluated by determining the double-standed DNA (dsDNA) content using the PicoGreen assay kit (Molecular Probes). The oscillatory perfusion group scaffold had significant higher number of cells than the static group 24 postseeding (p<0.05), as determined from measuring the DNA content (Fig. 3A). The scaffold DAN content after 5 days of differentiating culture was also higher in the oscillatory perfusion culture than in the static culture (p<0.1). During the 5 days of differentiation culture by oscillatory perfusion, the doubling time of the cells was significantly longer than that by the static culture method(Fig. 3B), indicating that the proliferation rate in the perfusion culture during this period (p<0.05).
Hydrodynamic 3D Culture for Bone Tissue Engineering

Fig. 3. A: DNA content of MC 3T3-E1 cells per scaffold after 24 h of seeding and 5 days of differentiation (day6). B: Doubling time of static culture and oscillatory perfusion culture during 5 days of differentiation culture, calculated from dsDNA content. All the experiments were conducted independently (static group: n=4, oscillatory perfusion group: n=3). Error bars represent SD. The asterisk (*) indicates a statistically significant difference between the static group and the perfusion group (p<0.05). (Du et al., 2007)

Fig. 4. ALP activity of seeded MC3T3-E1 cells after 5 days of differentiation culture. A: Total ALP activity per scaffold. B: ALP activity per dsDNA content per scaffold, as an estimate of cellular ALP activity. All the experiments were conducted independently (static group: n=4, oscillatory perfusion group: n=3). Error bars represent SD. The asterisk (*) indicates a statistically significant difference between the static group and the perfusion group (p<0.05). (Du et al., 2007)

To evaluate the osteogenic function of the attached MC 3T3-E1 cells, activity of ALP, an early osteogenic differentiation marker, was assayed. The activity of ALP was measured by a chloroimetric endpoint assay. The same supernatant samples as those prepared for the DNA content assay were used. After 5 days of differentiating culture, the total ALP activity
was significantly higher in the oscillatory perfusion culture than in the static culture (p<0.05) (Fig. 4A). As shown in Figure 4B, perfusion culture showed a higher average ALP activity per dsDNA content than that in the static culture (p<0.1), suggesting higher levels of ALP per cell in the oscillatory perfusion culture.

Stereomicroscopic observation of living cells darkly stained by MTT indicated that after 24 h of static seeding by top dropping, cells indeed penetrated into the center of the scaffolds (Fig. 5C) but remained at a much higher density on the top surface (Fig. 5A) and with cells seeded very sparsely in the lower regions (Fig. 5D, E). After 5 days of differentiation culture, the density of cells increased significantly, and the cells appeared as a uniform layer on the top surface of the scaffolds (Fig. 5); far fewer living cells were found in the deeper pores (Fig. 5L-O). The cell density also increased along the side surfaces of the scaffolds with a top-to-bottom gradient of cells (data not shown), but MTT staining was pale in the center of the scaffold (Fig. 5M). On the contrary, the MTT staining of the oscillatory perfusion culture scaffolds showed a uniform seeding density (Fig. 5F-J) and subsequent homogeneous cell proliferation throughout the scaffold (Fig. 5P-T).

Fig. 5. MTT staining observed by fluorescence stereoscopy. A-J, 24 h after seeding; KT, 5 days of differentiation culture. A-E, and K-O are images from a static culture sample at the indicated region; F-J, and P-T are images from an oscillatory perfusion culture sample at the indicated regions of the scaffold. The dark crystals layering the pores represent the locations of living cells. Scale bar = 250 μm. (Du et al., 2007)
Fig. 6. A: Calcein-AM/PI double staining of the middle section of the scaffolds after 5 days of differentiation culture. a-e images from fluorescence stereomicroscopy of the indicated regions from a scaffold in static culture; f-j, images of the same regions from a scaffold in an oscillatory perfusion culture. Living cells are stained green and dead cells red. Scale bar = 100 mm. B: Number of living and dead cells per view at the same magnification of A. C: Cell viability in the indicated regions. The results are derived from B. Error bars represent SD, n=6. Asterisks (*) indicate a statistically significant difference between the static group and the oscillatory perfusion group (p<0.05). (Du et al., 2007)
To elucidate the fate of cells seeded in the center of the scaffold in the static culture and whether the oscillatory shear flow led to severe damage to cells, Calcein-AM,PI double staining to visualize living and dead cells, respectively, and quantitative study of cell distribution and viability were conducted. The double staining showed that after 6 days of static culture, green (calcein) and red (PI) fluorescence were both strong on the top surface (Fig. 6Aa). However, only a few PI-stained cells-apparently undergoing apoptosis or necrosis—were found in the center of the scaffold (Fig. 6Ac), and only a sparse presence of shrunken red-stained nuclei of dead cells was noted in the lower region (Fig. 6Ad). On the other hand, green-stained living cells were distributed evenly throughout the scaffold cultured in the oscillatory perfusion system with a similar ratio of sparse dead cells to more abundant living cells throughout the scaffold (Fig. 6Af-j). The cell distribution was quantified (Fig. 6B). Living cells were distributed homogeneously throughout the section views in the oscillatory perfusion culture, whereas mainly dead cells were distributed heterogeneously in the static culture scaffolds. Analysis of the viability of the cells by scaffold section revealed homogeneous cell viability in the oscillatory higher than the viability of the static cultured cells (p<0.05, n=5; Fig. 6C).

In summary, the present study demonstrates that a relatively large engineering bone construct (10 mm diameter x 8 mm height) could be developed in vitro by culturing composites of osteoblast-like cells and porous ceramic blocks with an oscillatory perfusion system. The oscillatory flow condition not only allows a better seeding efficiency and homogeneity, but also facilitates uniform culture and early osteogenic differentiation, which suggests that the oscillatory perfusion culture system may be a valuable and convenient tool for bone tissue engineering. Another significant advantage of the perfusion system is that only a small volume of medium is needed to load oscillatory flow in this bioreactor, which makes it an especially efficient tool for conditioned culture with expensive growth factors or gene vectors with more economical feasibility. The produced cellular matrix might also be concentrated in such a small volume. In addition, similar studies by other kinds of cell types and scaffold materials would be helpful to investigate furtherly about the biological effects of oscillatory flow on 3D culture for tissue engineering.

2.1.2 Oscillatory perfusion culture of CaP-based tissue engineering bone with and without dexamethasone (Helvetica, 9 pt, bold)

It is important to develop not only a feasible 3D culture system to maintain the tissue, but also an effective osteogenic system enhance and maintain the osteogenic potential of the graft. Dexamethasone is a key component in the classic osteogenic supplements (ascorbic acid, sodium b-glycerophosphate, and dexamethasone). It exerts a powerful effect on the osteogenic differentiation. Continual exposure to dexamethasone, beginning shortly after cell harvest, is required to drive and maintain the osteoblastic phenotype of marrow-derived progenitor cells. Although maintenance of the osteoblastic phenotype is desirable for long-term cultures, dexamethasone has been suggested to drive osteoprogenitors down the osteogenic pathway so quickly that they do not proliferate well, and even to induce apoptosis. Because previous studies have suggested synergistic osteogenic effects when both dexamethasone and unidirectional flow perfusion culture were used, (Holtorf et al., 2005) we supposed that beneficial synergistic effects could also be induced by dexamethasone and oscillatory fluid flow. Because the flow rates would have different biological effects on bone cells not only in two-dimensional (2D) culture on parallel plates (Bacabac et al., 2005; Bacabac et al., 2004; Bakker et al., 2001; Kreke et al., 2004; Thi et al., 2003), but also in 3D
Hydrodynamic 3D Culture for Bone Tissue Engineering

bone construction by a perfusion system (Cartmell et al., 2003), it would also be important to study the influence of different flow rates of the oscillatory flow on the administration of dexamethasone.

Moreover, CaP ceramic scaffolds were most widely used in clinical practice, but CaP materials had potential absorbing ability which might influence the performance of dexamethasone for osteogenesis. Therefore, it would be important for bone tissue engineering to confirm whether it would work the same way as 2D culture or not when CaP-based scaffolds were used for 3D culture. In addition, the 3D hydrodynamic environments in bioreactor would also make dexamethasone work differently from that of 2D static culture condition.

The mouse osteoblast-like cell line MC 3T3-E1, which has the potential to be further differentiated, was used in this work. The cells were seeded onto porous ceramic scaffolds using the oscillatory perfusion method to achieve a similar cellularity before culture, and eliminate any confounding effects arising from the use of different cell-seeding techniques. The seeded constructs were then cultured by either the static method or the oscillatory perfusion method continuously for 6 days either with or without dexamethasone. The flow rate of oscillatory perfusion was set at 0.05, 0.5, 1 mL/min per scaffold. The cell proliferation, early osteogenic effects and viability were evaluated.

From an MC3T3 sample of a known cell number, which was mixed with an equal volume of knifeminced scaffodl, the DNA content of MC3T3 per cell was determined to be 6.02 pg/cell, so the cell number could be evaluated by DNA content measurement. After seeding all cells by the oscillatory method, there were no significant differences among the groups, as shown in Fig. 7.

![Fig. 7. The cell number per scaffold after 6 days of culture. P0.05,P0.50, 1.00 referred to the perfusion groups with the flow rate of, respectively, 0.05m 0.50, and 1.00 mL/min. Error bars represent the means = SD. N=6. (Du et al., 2008)](image)

ALP activity is an important early osteogenic marker. As shown in Fig. 8, there were no significant differences in ALP activity between the cultures with and those without dexamethasone in either the perfusion or static culture groups. Total ALP activity per
scaffold was higher in all the perfusion culture groups than the static culture groups (p<0.05), except for the group perfused at 0.05 mL/min without dexamethasone. The total ALP activity was highest in the 0.5 mL/min perfusion groups, which were significantly higher than static culture and all perfusion groups at all other flow rates (p<0.05). The average ALP activity per cell in the 0.5 mL/min perfusion groups was significantly higher than that in the static culture group (p<0.05). The 1.0 mL/min perfusion group without dexamethasone had the lowest average ALP activity, and the activity in this group was significantly lower than that by other flow rates in the same medium.

Fig. 8. ALP activity analysis. (a) The total ALP activity per scaffold after 6 days of culture and (b) the average ALP activity per scaffold after 6 days of culture. P0.05, P0.50, P1.00, referred to the perfusion groups with the flow rate of, respectively, 0.05, 0.50, and 1.00 mL/min. Error bars represent the means = SE. N=6. The asterisk (*) indicated a statistically significant difference between the static group and the perfusion group (p<0.05); (#) indicates a statistically significant difference from groups of other flow rates in the same medium (p<0.05). (Du et al., 2008)

The status of the cells in the center of the scaffolds under different culture conditions was observed under SEM, as shown in Fig. 9. No living cells were found in the center of the
scaffolds subjected to static culture; higher magnification revealed dead cells that were shrunken and slack, with a preserved porous membrane and no surrounding extracellular matrix (Fig. 9a). However, numerous living cells were found in the center of the scaffold formed by perfusion culture; these cells were smooth, stretched out, and surrounded with a cellular matrix (Fig. 9b).

![Fig. 9](image.jpg)

Fig. 9. The cells in the center of scaffolds after 3 days of culture observed under a scanning electron microscope. (a) Static culture: no stretched cells were found except the porous and shrunken dead cells marked with an arrow and (b) perfusion culture (0.5 mL/min): living cells covered the surface of the pores in a stretched and intact shape. Scale bar =25 μm. (Du et al., 2008)

A gross view of the cell viability distribution throughout the various sections is shown in Fig. 10a. We can see that there is only a thin shell of living cells covering the surface of the scaffolds cultured by the static method, with few living cells inside; in the 1 mL/min perfusion group; however, the living cells were distributed uniformly throughout the scaffold. The uniformity of distribution in the perfusion groups was dependent on the flow rate with the necrotic area decreasing as the flow rate increased. There was no clear increase in necrotic area by the administration of dexamethasone. As shown in Fig. 10b, 10x objective of the cells in the center of the scaffolds revealed that there were almost no green-stained living cells in the scaffolds subjected to static culture, but the cellular viability in the center of the scaffolds in the perfusion culture increased as the perfusion rates increase, especially in the groups perfused at 0.5 and 1.0 mL/min, in which the green-stained living cells covered the pore surfaces uniformly with a stretched shape. The groups treated with dexamethasone did not show any differences compared to those without dexamethasone. The cell viability was further studied quantitatively under 10x objective. The uniformity of the viability was as the total viability decreased as the flow rate was decreased to 0.05 mL/min (Fig. 11). The perfusion culture had higher viability than static culture from the section view.
In conclusion, the biological effects of dexamethasone on oscillatory perfusion culture of tissue engineering bone on a CaP scaffold was investigated. The results showed that the oscillatory flow could enhance early osteogenesis of osteoblast-like cells in 3D culture on ceramic scaffolds, with a peak function at the flow rate of 0.5 mL/min. The cell viability was significantly higher and more uniform in the perfusion groups than in the static culture groups. The uniformity decreased as the perfusion rates decreased. However, dexamethasone was suggested to have no effect when CaP ceramics were used as scaffold, and thus other osteogenic growth factors should be used under this condition. Because most osteogenic growth factors are very expensive, the oscillatory perfusion culture using small medium-to-volume ratio perfusion culture using CaP scaffolds. Such a dynamic conditioned culture could also produce bioactive engineered bone tissue that would function as a DDS for bone regeneration.

Fig. 10. Calcein-AM/PI double staining of the midline section of the scaffolds culture with MC 3T3-E1 cells for 6 days by the static method or the perfusion method observed under a fluorescent stereomicroscope. The living cells were stained green and the dead cells red. (a) The gross views of the whole sections, scale bar = 2 mm and (b) the center of scaffolds, scale bar = 100 μm. (Du et al., 2008)
Fig. 11. Quantitative study of the cell viability distribution according to Calcein-AM/PI double staining of the middle section after 6 days of culture observed under a fluorescent stereomicroscope under 10x objective; (b) the viability of the corresponding regions in (a); and (c) the total cell viability of each culture method. Error bars represent the means ± SE, n=6. The asterisk (*) indicates a statistically significant difference between the static group and the perfusion group (p<0.01). (Du et al., 2008)

2.1.3 3D culture by unidirectional or oscillatory flow for bone tissue engineering

As we mentioned in 2.1.2, the compact perfusion system with oscillatory flow appeared to enhance early osteogenesis and the uniformity of cultured bone constructs. Here, we compared the biological effects of a perfusion system with unidirectional flow on the 3D
construction of cell-seeded bone grafts against those of a perfusion system with oscillatory flow. Mouse osteoblast-like cells, MC 3T3-E1 were cultured in porous ceramic scaffolds by either static, unifirectional perfusion, or oscillatory perfusion culture for 6 days. Cell proliferation, early osteogenic effects, and viability were then evaluated.

A unifirectional perfusion system was designed as shown in Figure 12A. A media tank was set on each end of the perfusion camber as both media reservoirs and gas bubble trappers.

A gas-permeable bag was set in the circuit loop as a gas exchanger. The unifirectional media flow was driven by a syringe pump. A couple of silicon tubes led from Tank 2 to the clean bench, so that the medium could be exchanged in the sterile environment without moving the whole complicated system. The perfusion system with the scaffolds set inside was sterilized by ethylene oxide gas.

As shown in Figure 13, the calcein-AM/PI double staining of the midline section of the samples after 6 days of culture demonstrated that the living cells grew only on the surfaces of the scaffolds cultured statically (Fig. 13A; the cells grew extremely inhomogeneously in unidirectional perfusion culture, where there was a clear inverted arch-shaped interface between living cells and the non-living area (Fig. 13B).
Fig. 13. Calcein-AM (green; living cells)/propium iodide (red; dead cells) double fluorescence staining of the scaffolds cultured with MC3T3-E1 cells for 6 days by static and perfusional methods with either unidirectional flow (1mL/min) or oscillatory flow (0.5 mL/min): (A) static culture; (B) unidirectional perfusion culture at 1 mL/min; (C) oscillatory perfusion culture at 0.5 mL/min; (D) oscillatory perfusion culture at 1 mL/min. (Du et al., 2009)

Fig. 14. Calcein-AM (green; living cells)/propidium iodide (red; dead cells) double fluorescence staining of the scaffolds cultured with MC3T3-E1 cells for 6 days by static and perfusional methods with either unidirectional flow (1mL/min) or oscillatory flow (0.5 mL/min). Images of scaffolds observed at 10x objective of a fluorescence stereomicroscope are shown according to the regions indicated by the broad views on the left. (Du et al., 2009)
In contrast, the scaffolds cultured by the oscillatory flow had a relatively uniform distribution of living cells throughout the scaffolds. The inhomogeneous living cells distribution of the unidirectional perfusion culture was further verified by higher magnification, as shown in Figure 14. In the unidirectional perfusion culture, the top surfaces of the scaffolds were covered by a thick layer of cells and, above the arch-shaped interface, there were dense living cells over the pore surface. However, very few cells were living below the interface or at the bottom of the scaffolds.

As shown in Figure 15, the quantitative study of cell viability in the section further confirmed the findings presented above. In static culture, there were few living cells in the section view, and these were accumulated only near the top surface. In the unidirectional perfusion culture, the living cells and dead cells were distributed extremely inhomogeneously, with living cells favoring the upper positions (Fig. 15A).

![Figure 15](image_url)

Fig. 15. Quantitative study of cell viability distribution according to the calcein-AM/PI double staining of the middle section after 6 days of culture observed under fluorescent stereomicroscope under 10x objective. The number s 0.5 and 1.0 refer to the flow rates of these groups in mL/min. A: Living and dead cell numbers per view of respective regions were counted at the same magnification as in Figure 3. U: upper; M: middle; L: lower, (B) viability of respective region derived from (A); Error bars represent means = SD. N=6. (Du et al., 2009)

However, although there were fewer cells in the lower part of the scaffold in the unidirectional perfusion culture, their viability was not low (Fig. 16B); in the oscillatory perfusion culture, the cells proliferated uniformly throughout the scaffolds.
Fig. 16. The cell number per scaffold after 6 days of culture. The numbers 0.5 and 1.0 refer to the flow rates of the groups in mL/min. Error bars represent means ± SD, n=6. The asterisk (*) indicates a statistically significant difference between the static group and all other groups. (Du et al., 2009)

Fig. 17. The average ALP activity per cell after 6 days of culture. The numbers 0.5 and 1.0 refer to the flow rates of the groups in mL/min. Error bars represent means ± SD, n=6. The asterisk (*) indicates a statistically significant difference between the static group and the perfusion group (P<0.05). # indicates a statistically significant difference between unidirectional perfusion group and the oscillatory perfusion group (P<0.05). (Du et al., 2009)
The total cellularity of the scaffolds after 6 days of culture was evaluated by DNA content analysis, as shown in Figure 17. The total cell number in unidirectional flow perfusion was significantly higher than in any of the other groups (p<0.05).

The average ALP activity did not differ significantly between the unidirectional perfusion culture and the static culture (P>0.05), although that of the oscillatory perfusion at 1 mL/min was also not significantly higher than that of the static group (Fig. 17).

Osteoblast-like cells were cultured with porous ceramic scaffold three-dimensionally in vitro for 6 days under static and hydrodynamic conditions with either unidirectional or oscillatory flow. Although the unidirectional flow increased cell proliferation, the proliferation was extremely inhomogeneous, which rendered the engineered bone unsuitable for transplantation. On the other hand, the oscillatory flow enabled uniform proliferation of osteogenic cells and increased early osteogenesis. This suggested that the oscillatory fluid flow might be better than unidirectional flow for 3D culture of engineered bone in vitro. The oscillatory perfusion system could be a compact, safe, and efficient bioreactor for bone tissue engineering.

3. Conclusion

As bone is a loading-dependent remodeling tissue, design of bioreactors for bone tissue engineering could not only culture a uniform “living” tissue, with suitable type and appropriate amount of physical stimuli, we may also “exercise” the bone graft in vitro and achieve a functional active engineering bone. As well as an efficient culture device for chemotransport and physical environment simulation, the design of future bioreactors would also be preferred to be safe, economy acceptable, customized-scaffold and nondestructive evaluation supported culture system.

4. Acknowledgment

This work was supported by a leading-edge research promotion fund from Japan Society for the Promotion of Science (JSPS), and a Grant-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology, GCOE Program. We gracefully acknowledge Olympus Terumo Biomaterials Corp. for the supply of scaffolds.

5. References

Regenerative Medicine and Tissue Engineering - Cells and Biomaterials

Part 5

Cell - Biomaterial Interaction
1. Introduction

The foreign body response describes the non-specific immune response to implanted foreign materials (Coleman et al., 1974; Anderson, 2001; Luttikhuizen et al., 2006). It is characterised by the infiltration of inflammatory cells to the area to destroy or remove this material, followed by the repair or regeneration of the injured tissue. However, if the foreign material cannot be phagocytosed and removed, the inflammatory response persists until the material becomes encapsulated in a dense layer of fibrotic connective tissue (Anderson, 2001) which shields it from the immune system and isolates it from the surrounding tissues.

The foreign body response has developed as a protective mechanism to limit exposure to toxic or allergenic materials, but also presents a problem for modern medicine. Biomedical devices now serve in a vast number of medical applications, including orthopedic, dental and breast implants, pacemakers, sutures, vascular grafts, heart valves, intraocular and contact lenses, controlled drug delivery devices and biosensors. This response is common to all medical devices or prostheses implanted into living tissue, and ultimately results in fibrosis or fibrous encapsulation which compromises the efficiency of the device and frequently leads to device failure (reviewed in Anderson et al., 2008). For example, the contraction of the myofibroblast-rich capsules around breast implants leads to ‘implant shrinkage’ (Abbondanzo et al., 1999) while encapsulating tissue prevents the diffusion of molecules to biosensors or from implanted drug delivery pumps (Anderson et al., 2008).

The response to implanted materials varies depending on their physicochemical properties (eg shape, size, surface chemistry, morphology and porosity; see Morais et al. (2010) for review). Jones et al (2007; 2008) have shown that macrophage adhesion and fusion is higher on hydrophobic surfaces than hydrophilic/neutral surfaces while McBane and co-workers (McBane et al., 2011) found that compared with 2-dimensional films, 3-dimensional porous polyurethane scaffolds induced a low inflammatory, wound healing phenotype and may
reduce the negative effects of the foreign body reaction. However despite attempts to identify non-immunogenic implant materials, or to mask surface properties of the implant material with biocompatible coatings (Quinn et al., 1995; Shive & Anderson, 1997; Draye et al., 1998; Paradossi et al., 2003), the inflammatory response cannot be completely avoided (Cao et al., 2008). This is thought to be due to the adsorption of proteins such as fibrinogen, complement and antibodies to the material immediately after implantation (Kao et al., 1999; Hu et al., 2001; Gretzer et al., 2006). Thus as outlined by Wisniewski et al (2001), the key to long-term functionality of implanted devices such as glucose sensors is modulation of the tissue response. In order to do this, it is important to first understand the mechanisms underlying the foreign body response to implanted biomaterials, the cells involved and their molecular mediators.

2. Application of the foreign body response to tissue engineering

While the foreign body response is an unwanted consequence of implantation of biomedical devices, the fibrotic response to implanted scaffold material has been investigated as a strategy for tissue engineering purposes. Sparks (1969, 1973) used the host inflammatory response to a foreign material to create living autologous tissue suitable for arterial bypass grafting. In this procedure a mandrel, composed of a smooth silicone rubber rod of desired diameter and length, covered with a large-mesh knitted dacron tube, was implanted subcutaneously near the location of the artery to be grafted. However despite intensive testing, the lack of compliance/strength of the resulting tissue, as well as the absence of an endothelial lining, resulted in unacceptably high rates of thrombosis, dilatation and aneurysm (Conte, 1998). More recently, our laboratory and others have used the peritoneal cavity as a ‘bioreactor’ to produce autologous tissue for replacement/repair of arteries (Campbell et al., 1999, 2000, 2008; Chue et al., 2004) and other hollow smooth muscle organs, specifically bladder, uterus, vas deferens (Campbell et al., 2008) and urethra (Gu et al., 2009). De Visscher and co-workers used a similar technique to pre-seed acellular matrix scaffolds from bovine pericardium for use as tissue engineered heart valves (De Visscher et al., 2007, 2008; Vranken et al., 2008) while Hayashida et al (2007) reported satisfactory function and mechanical properties for ‘biovalves’ prepared by embedding synthetic scaffolds subcutaneously for 4 weeks. This tissue has also been used as a source of growth factors to stimulate bone formation to repair a femoral bone defect in a sheep model (Lutton et al., 2009).

In the procedure described by our laboratory, sterile foreign objects of the appropriate shape are implanted into the peritoneal cavities of animals for 2-3 weeks, then the encapsulating tissue removed for grafting into the same animal. Our original studies showed that in the first 3 days after implantation of a foreign object, undifferentiated cells of bone marrow origin, either resident within the peritoneal fluid or recruited to it, encapsulated the object (Campbell et al., 2000). Most of these cells expressed the common leukocyte antigen (CD45) and had the morphological appearance of monocyte/macrophages (Campbell et al., 2000). By day 7 a distinct capsule of round cells and extracellular matrix (ECM) had formed, and by day 14 cells had elongated and organised into multilayered strata within a fibrillar matrix. Ultrastructurally, these elongated cells had the characteristics of myofibroblasts and contained large amounts of rough endoplasmic reticulum and bundles of peripherally distributed myofilaments (Campbell & Ryan, 1983; Campbell et al., 1999). A layer of
mesothelial cells was also observed to cover the developing capsule. The tissue encapsulating free-floating foreign objects in the peritoneal cavity is avascular, in contrast to tissue surrounding foreign material at other anatomical sites which is highly vascularised (Campbell & Ryan, 1983).

The capacity of cells within this myofibroblast-rich tissue capsule to differentiate further, if subject to the appropriate environmental cues, has also been demonstrated. For example, when grafted into an autologous artery to replace excised segments, they gradually (over 1-2 months) developed the characteristics of mature vascular smooth muscle cells (SMC) and expressed the smooth muscle differentiation markers smoothelin and smooth muscle myosin heavy chain isoform SM-2 (Efendy et al., 2000; Chue et al., 2004). Tissue remodelling occurred such that the grafted tissue developed morphological characteristics of the native artery, with the luminal surface of the smooth muscle tube becoming lined by endothelial-like cells, an outer ‘adventitial’ layer comprising fibroblasts, collagen matrix and vasa vasora also developed. SMC differentiation could be similarly induced by subjecting graft tissue to active intermittent stretch in vitro (Efendy et al., 2000). Similarly, when myofibroblast-rich capsules were grafted into bladder, vasa deferens or uterine horn, the graft tissue gradually remodelled to resemble the host organ, both structurally and functionally (Campbell et al., 2008).

3. What are myofibroblasts?

Myofibroblasts are heterogeneous cells of diverse origin with a morphology intermediate between fibroblasts and smooth muscle (Gabbiani et al., 1971; Powell et al., 1999; Hinz et al., 2007; Hinz, 2010). They are characterised by expression of the smooth muscle actin isoform (α-SM actin), the fibronectin splice variant ectodomain (ED-A FN) and synthesis of ECM proteins such as collagen I (Serini et al., 1998). During normal wound repair, myofibroblasts are transiently present at the wound site where they play essential roles in wound contraction and restoration of tissue integrity. Once the wound has regained normal structure and function, myofibroblasts disappear as a result of apoptosis (Gabbiani, 1996). However the prolonged presence of these cells leads to excessive collagen production and tissue contraction, and ultimately reduced tissue function and fibrosis (Mutsaers et al., 1997). Thus the timely appearance, differentiation and removal of myofibroblasts are critical for appropriate wound healing. However, despite the important roles played by myofibroblasts, further research is required to clarify the regulatory mechanisms controlling their proliferation, differentiation and apoptosis, and the factors that turn a normal repair process into pathology.

4. What is the origin of foreign body-induced myofibroblasts?

Myofibroblasts were originally believed to be derived from tissue fibroblasts (Serini and Gabbiani, 1999), but there is now mounting evidence for alternative origins, depending on the tissue location and surrounding microenvironment. These include epithelial cells (via epithelial-mesenchymal transition; EMT; Iwano et al., 2002; Zeisberg et al., 2007; Kim et al., 2009), smooth muscle cells (Humphreys et al., 2010) and fibrocytes (Bucala et al., 1994; Abe et al., 2001; Quan et al., 2006). As major cellular constituents of the healthy peritoneal membrane, mesothelial cells are also thought to be a source of myofibroblasts within the
peritoneal cavity, via EMT (Pollock, 2005). Indeed intermediate cell types (co-expressing mesothelial and myofibroblast markers) have been reported in dialysis effluent and parietal peritoneum of peritoneal dialysis patients (Yanez-Mo et al., 2003; Jimenez-Heffernan et al., 2004). There is also evidence that myofibroblasts can derive from a bone marrow progenitor. Our early investigations used a chimaeric mouse model to demonstrate that cells of haematopoietic origin form the myofibroblast capsule in the peritoneal cavity (Campbell et al., 2000). These findings have been corroborated by numerous studies showing bone marrow-derived myofibroblasts in many organs including lung (Hashimoto et al., 2004; Brocker et al., 2006), stomach, oesophagus, skin and kidney (Direkze et al., 2003).

Given the prevalence of macrophage-like cells in the early tissue capsule, and the fact that myofibroblasts within this tissue can be derived from haemopoietic origin, we proposed that macrophages are a likely source of myofibroblasts in the peritoneal foreign body response. The capacity for peritoneal macrophages to transdifferentiate was first proposed by Kouri and Ancheta (1972) who demonstrated the presence of cells with intermediate morphologies between macrophages and fibroblasts within tissue capsules that formed around Epon lamina implants. Our laboratory also identified similar cells in the tissue capsule around foreign material (boiled blood clots) implanted in the peritoneal cavity (Campbell & Ryan, 1983; Mosse et al., 1985).

To further investigate this hypothesis, we used transgenic ‘MacGreen’ mice (in which the enhanced green fluorescent protein (EGFP) transgene is driven by the colony stimulating factor-1 receptor (csf1r) proximal promotor to direct myeloid-restricted expression; Sasmono et al., 2003, 2007) to show that the majority of cells recruited to encapsulate the foreign body were of myeloid (monocyte/macrophage) origin (Mooney et al., 2010). Although a small subset of EGFP+ cells, comprising mainly lymphocytes and mast cells was also observed, these cells are unlikely to contribute directly to fibrotic tissue formation. Indeed Rodriguez et al (2009) showed that the foreign body response is similar in T-cell deficient mice, indicating that T lymphocytes do not play a significant role in this process.

Characterisation of the myeloid cell response by FACS analysis showed that in the early phase (day 2) there was a rapid recruitment of EGFP+ Gr1+ (Ly6C+) subsets to the peritoneal cavity to encapsulate the foreign object; these cells are granulocytes and monocytes, similar to those described by Geissmann et al. (2003) and Sunderkotter et al. (2004) As the inflammatory response progressed, expression of Gr1 (Ly6C) was down-regulated, with concomitant up-regulation of F4/80 (indicative of mature macrophages) and the csf1r-EGFP transgene. Macrophages persisted throughout the period of study, such that by day 28, mature ‘resident-like’ macrophages (Gr1-EGFP^{hi} F4/80^{hi}) were the predominant cell type within the tissue capsule. The EGFP+ cells within the day 28 tissue capsule included many cells with spindle-shaped myofibroblastic morphology, although macrophages, multinucleated giant cells and a small number of neutrophils were also present. Foreign body giant cells are formed by fusion of macrophages (Anderson, 2000) and are considered a hallmark of the foreign body response (Jay et al., 2010). The presence of macrophages up to 28 days after foreign body implantation is in accord with a previous report by Gretzer et al. (2006) who showed increasing proportions of ED2+ mature macrophages over time in exudates surrounding subcutaneous implants in rats. However in our experience, the peritoneal foreign body response is more rapid in rats than mice. In contrast to the mouse
where only a small proportion of cells express α-SM actin at day 14 (Mooney et al., 2010), at this time-point in rats, the majority of cells within the tissue capsule no longer express haemopoietic markers (CD45 or CD68) and most express myofibroblast markers α-SM actin and SM22 (Le et al., 2010).

The essential role of macrophages in the peritoneal foreign body response was confirmed by experiments using MacGreen mice in which macrophage depletion with clodronate liposomes almost completely abrogated tissue capsule development (Mooney et al., 2010). We further showed that as the tissue capsule developed around foreign body implants in the peritoneal cavity, a sub-population of EGFP+ cells appeared that co-expressed the myofibroblast marker α-SM actin. The proportion of EGFP+ α-SM actin+ cells increased with time, reaching 51±1% of total cells (approx 80% of total α-SM actin+ cells) at later stages of tissue development. The morphology of EGFP+ α-SM actin+ cells also changed from a rounded macrophage-like appearance to a more spindle-shaped myofibroblastic phenotype, thus providing evidence that cells of myeloid origin can transdifferentiate to myofibroblasts (Mooney et al., 2010). These results are in agreement with those of Jabs et al. (2005) who demonstrated that labelled peripheral blood mononuclear cells contributed to tissue capsule formation and that from day 14 onwards, a proportion of α-SM actin-expressing spindle-shaped cells co-expressed macrophage markers (ED1/ED2).

Macrophage transdifferentiation has been documented in a number of other settings. Cultured peritoneal macrophages from mice chronically infected with Schistosoma mansoni exhibited fibroblast-like characteristics and co-expressed fibroblast (pro-collagen) and macrophage (mac-1/mac-2) markers (Godoy et al., 1989; Bertrand et al., 1992) while monocyte-derived macrophages in infarcted myocardium have been reported to differentiate to myofibroblasts (Fujita et al., 2007). In response to transforming growth factor (TGF)-β, cultured peritoneal-derived macrophages have also been shown to transdifferentiate into smooth muscle-like cells/myofibroblasts, expressing smooth muscle/myofibroblast markers such as calponin and α-SM actin and down-regulating expression of the macrophage marker CD11b (Ninomiya et al., 2006).

Although there is now convincing evidence for the direct involvement of macrophages as cellular progenitors of fibrotic tissue, other cellular sources of peritoneal myofibroblasts are also possible. Vranken et al. (2008) identified stem/progenitor cells expressing Sca-1, c-kit, CD34 and CD271 as major contributors to the early foreign body response to bovine pericardium patches implanted in the peritoneal cavity. Importantly these latter cells were shown to have the potential to differentiate to a number of lineages, including myofibroblastic. More recently this same group has suggested that fibrocytes (CD68+CD34+), rather than macrophages (CD68+ CD34-) are able to differentiate to myofibroblasts (Mesure et al., 2010).

Macrophages also have indirect (paracrine) roles in the fibrotic response to foreign material, releasing cytokines, growth factors, other inflammatory mediators and matrix degrading enzymes to modulate the inflammatory response and regulate tissue repair (Xia & Triffitt, 2006). In serosal wound healing and fibrosis, macrophages have been implicated to play a supporting role via the release of cytokines/growth factors which stimulate mesothelial cell proliferation (Mutsaers et al., 2002) and fibrogenic processes such as ECM synthesis (Sakai et al., 2006). Macrophages also play a key role in angiogenesis and tissue repair, releasing matrix metalloproteinases and angiogenic growth factors (Murdoch et al., 2008) and cooperating with progenitor cells (Anghelina et al., 2006).
5. What regulates tissue capsule development and myofibroblast differentiation?

In order to identify key transcriptional events associated with development of the non-adhered, avascular myofibroblast-rich tissue encapsulating foreign objects implanted in the peritoneal cavity, our laboratory performed microarray expression profiling of tissue from different stages of capsule development in a rat model (Le et al., 2010). Consistent with changes in cellular composition, the data showed a change in gene expression over time from inflammatory, particularly myeloid cell-associated (including genes for CD14, CSF-1 and its receptor, CSF-1R) at the early stages of capsule formation, to myofibroblast-related (including SM-22 and fibulin) at later stages. The temporal changes in gene expression included the early up-regulation of genes for inflammatory mediators and chemokines (such as monocyte chemoattractant protein (MCP)-1, monocyte inflammatory protein (MIP-1α) and its receptor CCR1, and stromal-derived factor (SDF)-1) to attract inflammatory cells (mainly macrophages) to the foreign object, as well as altered expression of adhesion molecules associated with inflammatory responses and (later) tissue morphogenesis.

Also identified were growth factors and cytokines (including platelet-derived growth factor (PDGF) and TGF-β) known to be released by macrophages at the onset of the foreign body response (Luttikhuizen et al., 2006), as well as ECM proteins (collagens I and 3, biglycan, decorin, syndecans-1 and -2) and enzymes associated with fibrosis and tissue remodelling (matrix metalloproteinases MMP-2 and -9) and their inhibitors (plasminogen activator inhibitor (PAI)-1 and tissue inhibitor of metalloproteinase (TIMP)-1). In addition to its role as a potent mitogenic and chemotactic agent for myofibroblast progenitors (Lindahl & Betsholtz, 1998), PDGF-BB is associated with the early stages of myofibroblast differentiation from progenitor cells (Oh et al., 1998). TGF-β is the principal mediator of myofibroblast differentiation in wound healing, inducing fibroblasts (and possibly other cell types) to differentiate into α-SM actin-expressing myofibroblasts with the capacity for contraction and ECM synthesis (Leask & Abraham, 2004). TGF-β signalling was significant throughout tissue development, as evidenced by the continued expression of its receptor (TGFβRII) and downstream signalling molecules (SMAD-1,-2,-4 and latent TGF-β binding protein (LTBP)-2), as well as up-regulated expression of TGF-β inducible genes including connective tissue growth factor (CTGF), insulin-like growth factor binding protein (IGFBP)-3, TIMP-1, PAI-1, decorin and collagen I subunits (Verrecchia et al., 2001, 2006). The biological relevance of the data was confirmed by cell culture studies which showed that PDGF-BB stimulated the proliferation of tissue capsule cells, while TGF-β1 inhibited the response to serum mitogens but induced expression of α-SM actin (Zhang et al., unpublished data). Myofibroblast differentiation was further enhanced by a cocktail of PDGF, interleukin (IL)-13 and TGF-β. Moreover inhibition of TGF-β signaling, by either chemical inhibition of TGFβRI (ALK5) (with LY-364947; Sawyer et al., 2003) or siRNA inhibition of TGFβRII, reduced α-SM actin expression by these cells in vitro and inhibited tissue development in vivo, demonstrating the critical role of this growth factor in the peritoneal foreign body response (Chau et al., unpublished data).

Functional analysis of the gene array data identified Immune Response and Immune System Development and Function as significant during the early stages and Connective Tissue and Development and Function at later stages of tissue development. The importance of fibrotic signalling was corroborated by pathway analysis identifying Hepatic Fibrosis/Hepatic Stellate...
Cell Activation' as significantly up-regulated at days 14 and 21. Although peritoneal tissue capsules show no evidence of vascularisation, the gene expression data provides additional evidence of the potential of capsular cells for angiogenesis, with genes for angiopoietins-1 and -2, vascular endothelial growth factor (VEGF) and its receptors Flt-1 and Flk-1 up-regulated. Moreover, the identification of Cardiovascular System Development and Function and Skeletal and Muscular System Development and Function as significant at day 14 indicates that, although the tissue capsule does not develop these functions, cells within it may have the potential to differentiate further along multiple pathways. This finding provides a molecular basis for our demonstration that when transplanted into smooth muscle organs within the same animal, cells within the tissue differentiate further towards a smooth muscle phenotype (Campbell et al., 1999, 2008; Efendy et al., 2000). The identification of genes associated with other mesenchymal lineages such as endothelial, cardiac and skeletal muscle suggests the capacity to differentiate to these cell types, given the appropriate environmental conditions.

While this study provided information regarding global changes in gene expression associated with the tissue response to foreign body implantation, information regarding gene expression by individual cell types is also required. To this end, a recent study by Mesure and co-workers (2010) showed up-regulated expression of cytokines and inflammatory response genes in CD68+ cells isolated from tissue 3 days after foreign body implantation; pathways related to the innate immune response (IL-1α, IL-1β, IL-6, IL-10 and tumour necrosis factor (TNF-α), cell adhesion (ICAM-1, VCAM-1) and matrix remodelling (MMP-13) were identified. In vitro culture of these cells with fibrinogen showed a switch over time from inflammatory to wound healing macrophages, evidenced by over-expression of genes such as IL-13Rα, IL4Rα and arginase 1, and up-regulation of TGF-β signalling. These results are in line with an earlier study by Garrigues et al (2005) who identified a small number of genes which are highly regulated in macrophages exposed to wear debris from components of joint replacement prostheses. These included early changes (30 mins to 8 hours) in genes associated with ECM remodelling and angiogenesis, and also chemokines (IL-6), cytokines (RANTES, MIP-1α) and their receptors (TNFRI, 2 and IL2αR); other inflammatory cytokines (IL-1β, TNF-α, TGFβ3, oncostatin M) and IL6R-α subunit were up-regulated slightly later (at 24 hours).

Examination of cytokine production by biomaterial-adherent macrophages similarly showed expression of pro-inflammatory cytokines (IL-1β, IL-6, IL-8 and MIP-1β) highest at early stages (day 3) while IL-10 expression increased later, suggesting a phenotypic switch over time from classically activated to alternatively activated macrophages (Anderson & Jones, 2007). This has been corroborated by a recent study in our laboratory which identified two major phases: an inflammatory phase characterised by high levels of expression of Th1/M1 cytokines (IL-1β and TNF-α) at day 2, and a fibrotic phase regulated by TGF-β signalling pathways (Jahnke et al., unpublished data). Early expression of chemokines MCP-1, MIP-1α, RANTES and GRO/KC highlighted the importance of recruitment of inflammatory cells to the foreign object.

6. Modification of the foreign body response

The identification of strategies to regulate the foreign body response has important implications both for tissue engineering and for the proper functioning of implanted
medical devices. *In vitro* studies have shown that although the foreign body response cannot be completely avoided, monocyte adhesion is influenced by surface chemistry of the biomaterial, the type and amount of adsorbed protein, and adhesion time (Shen & Horbett, 2001). Possibilities to modulate the response and the cellular content of resulting tissue also exist.

Attempts to reduce the fibrotic response to implanted medical devices have included the use of biocompatible coatings to mask the underlying material and reduce protein adsorption and cellular interaction. Coating materials tested include synthetic polymers such as poly(vinyl alcohol) (Galeska et al., 2005), poly(lactic acid) and poly(lactic co-glycolic) acid (Athanasiou et al., 1996). Naturally occurring materials such as chitosan (Borchard & Junginger, 2001), collagen (Geiger et al., 2003) and alginate (de Vos et al., 2002) have also been used, although these are frequently immunogenic and subject to natural variability in their macromolecular structure (Morais et al., 2010). They also allow better cell adhesion and therefore may be more suitable for tissue engineering applications requiring enhanced tissue production (Cheung et al., 2007). The physical attributes of the material may also be important, with both porous PLA (Koschwanez et al., 2008) and collagen (Ju et al., 2008) coatings shown to reduce fibrosis and/or promote blood vessel formation to enhance function and life-time of implantable glucose sensors.

Hydrogels composed of polar, uncharged, flexible materials such as poly (hydroxyethyl methacrylate) (PHEMA) or polyethylene glycol (PEG) form a hydrophilic interface between the underlying surface and the surrounding tissue, and allow analyte diffusion (Wisniewski & Reichert, 2000). PEG-based hydrogels have been shown to substantially reduce the immune response around biosensors implanted in rats (Quinn et al., 1997) while PHEMA coatings reduced clotting and protein adsorption to calcium monitors in dogs (McKinley et al., 1981). Phospholipid-containing materials designed to mimic the cell membrane have been shown to reduce adhesion of inflammatory cells and fibrous capsule formation around vascular devices (Goreish et al., 2004) while Abraham et al. (2005) showed that formulations incorporating PEG and phosphorylcholine into PHEMA-based hydrogels greatly reduced protein adsorption.

Alternatively, strategies may be directed towards augmentation of the foreign body response for tissue engineering. In our attempts to enhance the production of tissue for transplantation as autologous grafts for hollow smooth muscle organs, we tested the tissue response to peritoneal implantation of poly(lactic acid) tubular scaffolds with different layer-by-layer biomolecule coatings (as described by Croll et al., 2006). Immunohistochemical analysis of the resulting tissue showed that Matrigel-coated surfaces supported the strongest cellular response whereas multilayer coatings with elastin, collagen I, collagen III or chitosan outermost showed the lowest levels of cellular interaction. While differences in capsule thickness and growth characteristics were observed, all of the biomolecule coatings tested induced the peritoneal foreign body response, even in the presence of a non-adsorptive hyaluronic acid undercoat (Cao et al., 2008).

The variable ability of polymeric coatings to reduce acute and chronic inflammatory responses *in vivo* (Shen et al., 2002; Park & Bae, 2003) has led to investigation of anti-inflammatory drugs to inhibit the tissue response to biomaterials. The most commonly used drug has been dexamethasone which modulates macrophage behaviour and reduces the levels of pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α (Joyce et al., 1997; Umland et al., 2002). Burgess and co-workers embedded dexamethasone-containing
PLGA microspheres in PVA hydrogels to create a ‘smart’ coating for glucose sensors which allowed rapid diffusion of analytes and slow release of dexamethasone (Hickey et al., 2002; Patil et al., 2004). Other anti-inflammatory strategies investigated include heparin-based coatings to reduce protein adsorption and leukocyte recruitment (Rele et al., 2005) and covalent conjugation of a superoxide dismutase mimetic to the surface of biomaterials, resulting in reduced neutrophil recruitment and inhibition of foreign body giant cell and fibrous tissue capsule formation (Udipi et al., 2000). However Jones (2007) has suggested that minimisation of the inflammatory response to implanted biomaterials may be counter-productive, and that a preferable strategy would be to design materials to direct the response towards reparative/wound healing. For example, it may be possible to tip the balance away from production of TGF-β1 (which promotes fibro-proliferation) towards TGF-β3 (which promotes tissue repair) (Ask et al., 2008). Indeed glucocorticoid drugs have been shown to modulate the phenotype of infiltrating macrophages and lymphocytes (Peek et al., 2005; Mosser & Zhang, 2008) and could thus be used locally to regulate the cellular response.

By altering the cell populations recruited to the foreign body it may be possible to modify the inflammatory response to implanted foreign material, as well as the cellular nature of the subsequent tissue response. Given that chemokines regulate cell trafficking (Gerard & Rollins, 2001) and play a key role in the recruitment of inflammatory cells in the peritoneal foreign body response (Luttikhuizen et al., 2007), chemokines may be an important target for intervention. De Visscher et al. (2010) have shown that impregnation of bioprosthetic heart valves with SDF-1 and fibronectin modulated the cellular response to produce more biologically relevant tissue with properties very similar to native valves, whilst Thevenot et al. (2010) showed that delivery of SDF-1α to the site of biomaterial implantation increased the recruitment of host stem cells, and at the same time reduced the inflammatory response, such that the fibrotic response to scaffold implants was ameliorated. They suggested that enhanced recruitment of autologous stem cells can improve the tissue responses to biomaterial implants through modifying/bypassing inflammatory cell responses and stimulating stem cell participation in healing at the implant interface. Our preliminary experiments show that continuous infusion of AMD3100 (a specific antagonist of the SDF-1 receptor, CXCR4; Matthys et al., 2001) does not inhibit encapsulation of foreign material implanted in the peritoneal cavity, but alters the cellular composition of the encapsulating tissue (Le et al, unpublished data). Another important chemokine, MCP-1, is highly expressed at the early stages of the cellular response to foreign body implantation (Le et al., 2010), and has been implicated in the pathogenesis of progressive fibrosis in lungs (Moore et al., 2001) and kidney (Kitagawa et al., 2004). Via its receptor CCR2, MCP-1 plays an important role in the recruitment of inflammatory monocyte subsets from the bone marrow into injured tissues (Geissmann et al., 2003; Karlmark et al., 2009). However Kyriakides et al. (2004) demonstrated that the lack of MCP-1 resulted in reduced foreign body giant cell formation, but did not affect either the recruitment/migration of macrophages to the site of biomaterial implantation or capsule formation.

Biomaterials may also be used to deliver anti-fibrotic drugs/inhibitors. As mentioned above, we have shown that inhibition of TGF-β signalling either by siRNA knockdown of TGFβRII or chemical inhibition of TGFβRII (ALK5) inhibits myofibroblast differentiation in vitro and peritoneal tissue capsule formation in vivo (Chau et al, unpublished data). However in light of the pleiotropic roles of TGF-β, a more suitable target for selective intervention may be the
downstream effector, connective tissue growth factor (CTGF) which is responsible for many of the pro-fibrogenic effects of TGF-β (Ward et al., 2008; Brigstock, 2009). Conversely, chemokines/growth factors may be incorporated into biomaterials to promote tissue production for replacement/repair. For example, polylactic/glycolic acid scaffolds (as described by Cao et al., 2006) stabilise and prolong the half-life of growth factors, and provide a means for localised release of the growth factor at a controlled dose and rate of delivery over a prolonged period (Richardson et al., 2001). Chemokines and growth factors could be incorporated into different layers, then released sequentially to first recruit cells to the scaffold, then promote the proliferation of adherent cells, and finally induce their differentiation to produce mature tissue.

7. Conclusion

The ability to regulate the fibrotic response to implanted materials has important implications for bioengineering, both to control the deleterious response to implanted medical devices and to enhance the production of tissue for organ repair. Myofibroblasts are critical for appropriate wound healing and tissue repair, but are also responsible for fibrosis. Hence understanding the origins of cells involved in the development of myofibroblast-rich tissue, and identification of the mechanisms regulating their (trans)differentiation and biology, is the key to successful bioengineering strategies.

Our research into the peritoneal foreign body response questions the traditional notion of distinct terminally differentiated cell types with specific functions. The results demonstrate a developmental continuum from monocyte (or granulocyte) through macrophage to myofibroblast, and potentially smooth muscle and/or other cell types. Given that cellular plasticity is a hallmark of the myeloid lineage (Hume, 2008), these findings extend the prevailing concepts of adult cell fate. We propose that, at least for some cell lineages, cellular identity is more fluid than previously recognised. Thus within its life-time, a single cell has the capacity to adopt a range of phenotypes and functions according to physiological needs and local regulatory milieu. While research to date has focussed on strategies to minimise/inhibit the inflammatory response to biomaterials, a preferable strategy may be to direct the response towards immune tolerance and tissue regeneration.

8. References

Vranken, I., G. De Visscher, A. Lebacq, E. Verbeken and W. Flameng (2008). The recruitment of primitive Lin(-) Sca-1(+), CD34(+), c-kit(+) and CD271(+) cells during the early intraperitoneal foreign body reaction. *Biomaterials* 29(7): 797-808.

1. Introduction

Tissue engineering is an interdisciplinary field that combines the knowledge and technology of cells, engineering materials, and suitable biochemical factor to create artificial organs and tissues, or to regenerate damage tissues (Langer & Vacanti, 1993). It involves cell seeding on a scaffold followed by culturing in vitro prior to implantation in vivo. The ideal scaffolds provide a framework and initial support for the cells to attach, proliferate and differentiate, and form an extracellular matrix (ECM) (Agrawal & Ray, 2001). It should be noted that scaffold surface topography and chemistry (wettability, softness and stiffness, roughness); microstructure (porosity, pore size, pore shape, interconnectivity, specific surface area) (O’Brien & Gibson, 2005b) and mechanical properties (Engler & Discher, 2006; Peyton & Putnam, 2005) have been shown to significantly influence cell behaviors such as adhesion, growth and differentiation, and to affect the bioactivity of scaffolds used for in vivo regeneration applications of various tissues, such as cartilage, skin and peripheral nerves. For tissue engineering purposes, understanding cell behavior and responses on extracellular scaffolds within physiological relevant 3D construct can aid the design of optimal bioactive tissue engineering scaffolds. Controlling cell behavior and remodeling by modulating the local engineered extracellular environment process is also a critical step in the development of the next generation of bioactive tissue engineering scaffolds. The present chapter will discuss cell responses to surface chemistry and various architecture parameters; current approaches and technologies to optimize tissue engineering scaffolds and challenges in studying the cell interaction with scaffolds.

2. Cell responses on surface chemistry of tissue engineering scaffolds

When cells adhere to surface of a scaffold, a sequence of physico-chemical reactions will happen between cells and the scaffold. Immediately after a tissue engineering scaffold is implanted into an organism or comes into contact with cell culture environments, protein adsorption to its surface occurs and which mediates the cell adhesion, and also provides signals to the cell through the cell adhesion receptors, mainly integrins. Cells can adhere on the surfaces of tissue engineering scaffolds and release active compounds for signaling, extra-cellular matrix deposition, cell proliferation and differentiation. The interaction
between cells and biomaterial scaffolds is called focal adhesion. To understand the factors that influence cell adhesive ability is a key in the development and application of new tissue engineering scaffold.

Cell attachment is a complex process, affected by numerous aspects, such as cell behavior, material surface properties, and environmental factors. Material surface properties comprise the hydrophobicity, charge, roughness, softness and chemical composition of the biomaterial surface itself.

2.1 Surface hydrophobicity

Biomaterial development has been focusing on surface modifications of biomaterials over years in order to promote a greater understanding and control of the material characteristics for regulating biocompatibility. The surface hydrophobicity is well known as a key factor to govern cell response. The surface hydrophobicity can be assessed by measuring contact angle through water spread of a droplet on a surface. The lower the contact angle, the more hydrophilic the surface is. Previous studies showed the more hydrophilic surface of material films is the much more cell adhesion on the surface (Goddard & Hotchkiss, 2007; Xu, 2007). For example, osteoblast adhesion was reported decrease when the contact angle of surface increased from 0° to 106°. Fibroblasts were found to have maximum adhesion when contact angles were between 60° and 80° (Tamada & Ikada, 1993; Wei et al., 2009). Interestingly, Vogler mentioned that the hydrophilic surface were suitable for the attachment of Madin-Darby Canine Kidney (MDCK) cells but more hydrophilic surfaces (contact angle θ < 65°) did not yield progressively high level of attachment efficiency (Vogler, 1999). Furthermore, surface hydrophobicity is related to the rate of cell spreading and differentiation. On hydrophilic surfaces, cells generally showed good spreading, proliferation and differentiation. Mouse osteoblast-like cell line MC3T3-E1 showed more fractal morphology on hydrophilic surface (contact angle θ = 0°) (Wei et al., 2009). 7F2 mouse osteoblasts on hydrophilic surface (contact angle θ = 24-31°) demonstrated accelerated metabolic activity and osteodifferentiation compared to their unmodified counterparts (contact angle θ = 72°) (Yildirim et al., 2010). The same phenomenon was observed in neuronal spreading and neurite outgrowth when the material surfaces reduced their hydrophobicity (Khorasani & Irani, 2008; Lee et al., 2003).

2.2 Protein adsorption

Since cell adhesion to material surface requires a series of cytoplasmic, transmembranal and extracellular proteins that assemble into stable contact sites (Geiger & Bendori, 1987), cell adhesion and behaviors is likely involved the adsorption onto the material surface of serum and ECM proteins (Brynda & Andrade, 1990; Hattori et al., 1985). Many proteins, including immunoglobulins, vitronectin, fibrinogen, and fibronectin (Fn), adsorb onto implant surfaces immediately upon contact with physiological fluids and modulate subsequent inflammatory responses. For example, adsorbed adhesive proteins mediate the attachment and activation of neutrophils, macrophages, and other inflammatory cells. Many literature studies mentioned that different cell behaviors, related to different hydrophobicities, may be mediated by protein absorption, because surface wettability modified the sort and the quantity of adsorbed cell adhesion molecules. Hydrophobic surfaces tend to adsorb more proteins, while hydrophilic surfaces tend to resist protein adsorption (Xu, 2007). Tamada et al. used bovine serum albumin (BSA), bovine γ-globulin and plasma Fn to study the protein
absorption onto various polymer substrates and the maximal protein absorption was observed on surfaces with water contact angle ranging from 60° to 80° (Tamada & Ikada, 1993). Hence wetting has been discredited as an adequate predictor of protein adsorption. However, there is a growing concern that surface hydrophobicity does not guarantee the protein adsorption. Certain hydrogel-like materials (e.g. oligo(ethylene glycol)) are resistant to protein adsorption even though these surfaces are (apparently) only modestly wettable (Noh & Vogler, 2006). Tamada reported that preadsorption of serum albumin prevented cell adhesion of fibroblasts to all substrates, whereas preadsorbed Fn enhanced cell adhesion of fibroblasts to all the substrates, independent of their water wettability. With preadsorption of Fn and BSA, similar pattern of cell attachment was investigated on a series of N-isopropylacrylamide and N-tert-butylacrylamide based copolymer films (Allen et al., 2006). Therefore, the composition and conformation of the adsorbed protein layer is considered to be one of the major factors in determining the nature of cell interaction with the materials.

2.3 Surface charge

After surface hydrophobicity, surface charge has been recently described a lot in the cell attachment phenomenon. Firstly, the amount of surface charges can influence cell behavior (Ishikawa et al., 2007). As the degree of charge density of poly(styrene-\textit{ran}-acrylic acid) increased, more cell adhesion and proliferation were observed (Jung et al., 2008). Fig. 1 presented similar effect on 2-hydroxyethyl methacrylate (HEMA) and 2-methacryloxyethyl trimethyl ammonium chloride (MAETAC) copolymer hydrogels (Kim & Kihm, 2009). Secondly, many researchers reported the improved-biocompatibility, cell affinity and cell differentiation on the implanted surfaces by using the positive ions and the negative ions (Bet et al., 2003). For instance, HEMA hydrogels incorporated with positive charges supported significantly more cell attachment and spreading of osteoblasts and fibroblasts as compared to negative or neutral charges (Schneider et al., 2004). Yaszemski’s groups also investigated that negatively charged oligo(poly(ethylene glycol) fumarate) hydrogels increased the extent of chondrocyte differentiation, such as collagen and glycosaminoglycan expression, in comparison with that on the neutral or positively charged hydrogel scaffolds (Dadsetan et al., 2011). Similar pattern was also performed on neuronal growth and differentiation (Makohliso et al., 1993). Positively charged coating materials such as polylysine improve neuronal attachment in vitro. On positive fluorinated ethylene/propylene (FEP) films, neurite outgrowth was significantly higher comparing to negative and uncharged substrates. Finally, the surface charges can be used to modify cell behavior through the chemical functionalities of the polymer materials (Table 1). Lee et al. prepared polyethylene (PE) surfaces with differently chargeable functional groups (-COOH, -CH$_2$OH, -CONH$_2$ and -CH$_2$NH$_2$ groups) by corona discharge treatment, graft copolymerization and substitution reaction to study the effect on cell behavior (J. H. Lee et al., 1994). Results indicated that Chinese hamster ovary (CHO) cells were more adhesive to the functional group-grafted surfaces than the control PE surface due to the increased wettability by grafting hydrophilic functional groups. The best cell adhesion, growth and spreading rate were recorded on polar and positively charged surfaces (amine group-grafted PE) while the negatively charged surface (carboxylic acid group-grafted PE) still had poor growth. Moreover, the surfaces grafted with neutral amide and hydroxyl groups showed a similar number of cell attachments; however; the morphology of cells attached on
the surfaces was quite distinct. The cells were spread much more on the hydroxyl group-grafted surface than the amide group-grafted one. On the other hand, surface charge may modulate protein adsorption to direct integrin binding and specificity, thereby controlling cell adhesion. Thevenot et al. mentioned that the incorporation of negative charges may facilitate adsorption of proteins which promote cell adhesion and responses (Thevenot et al., 2008). Keselowsky et al. reported that surfaces with differently chargeable functional groups (-CH₃, -OH, -COOH, and -NH₂ groups) modulated Fn adsorption and direct integrin binding and specificity to control cell adhesion of MC3T3 osteoblasts to Fn-coated surfaces followed the trend: OH > COOH = NH₂ > CH₃ (Keselowsky et al., 2003). Same group also demonstrated that surfaces grafted with hydroxyl and amine groups up-regulated osteoblast-specific gene expression, alkaline phosphatase enzymatic activity, and matrix mineralization compared with surfaces presenting carboxyl and alkyl groups (Keselowsky et al., 2005). Although the molecular mechanisms in how to modulate surface charge-dependent cellular activities still remain poorly understood, these latest findings confirm that surface charge plays an important role in the application of cell biology and tissue engineering.

<table>
<thead>
<tr>
<th>Functional group</th>
<th>Properties</th>
<th>Effect on cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>-CH₃</td>
<td>Neutral, hydrophobic</td>
<td>promotes increased leukocyte adhesion and phagocyte migration</td>
</tr>
<tr>
<td>-OH</td>
<td>Neutral, hydrophilic</td>
<td>increases osteoblast differentiation</td>
</tr>
<tr>
<td>-COOH</td>
<td>Negative, hydrophilic</td>
<td>Increase osteoblast attachment</td>
</tr>
<tr>
<td>-NH₂</td>
<td>Positive, hydrophilic</td>
<td>promotes myoblast and endothelial proliferation and osteoblast differentiation</td>
</tr>
<tr>
<td>-CH₂NH₂</td>
<td>Neutral, hydrophilic</td>
<td>enhance CHO attachment of Chinese hamster ovary cells</td>
</tr>
</tbody>
</table>

Table 1. The effect of material surface functional groups on proteins and cells (Schmidt et al., 2000)

Fig. 1. Chondrocyte viability on hydrogels with different concentrations of MAETAC (positive charge functional group) in their formulation on days 1: (a) 0%; (b) 5%; (c) 10%; (d) 20%; (e) 30%. (S. Kim et al., 2009)
2.4 Surface roughness

Material surface roughness (or topography) is another important factor influencing cell adhesion and behavior. Indeed, roughness modulates the biological response of tissues in contact with the implant. Material surface roughness has a direct influence in vitro as well as in vivo on cellular morphology, proliferation, and phenotype expression. Literature papers have been reported that cells grown on microrough surfaces, were stimulated towards differentiation; as shown by their gene expression in comparison with cells growing on smooth surfaces. For instance, primary rat osteoblasts had higher proliferation and elevated alkaline phosphatase (ALP) activity and osteocalcin expression on the rough surface (0.81 μm) in comparison with smooth one (Hatano et al., 1999). In the case of human foetal osteoblastic cells (hFOB 1.19), a similar increase in cell spreading and proliferation on rough surfaces was reported (Lim, Hansen, Siedlecki, Runt, & Donahue, 2005). Depending on the scale of irregularities of the material surface, surface roughness can be divided to macroroughness (100 μm – millimeters), microroughness (100 nm – 100 μm), and nanoroughness (less than 100 nm), each with its specific influence (AGASKÁ et al., 2010). The response of cells to roughness is different depending on the cell type. For larger cells, such as osteoblasts and neurons, macroscopic descriptions of the surface roughness could be reasonable (Donoso et al, 2007). Lee et al. examined the behavior of MG63 osteoblast-like cells cultured on a polycarbonate (PC) membrane surfaces with different micropore sizes (200 nm–8.0 μm) (Lee et al., 2004). It seems that the cell adhesion and proliferation were progressively inhibited as the PC membranes had micropores with increasing size, probably due to surface discontinuities produced by track-etched pores (Fig. 2). On the other hand, increasing micropore size of the PC membrane resulted in improved cell differentiation such as higher osteocalcin expression and ALP specific activity in isolated cells. Bartolo et al. also investigated neuronal cell behavior in the surfaces with nanoscale (6.26 nm) to microscale (200 nm) roughness (Bartolo et al., 2008). The axonal length increased and the neuritis becomes highly branched on the nanoscale rough surfaces (6.26-49.38 nm). In the case of microscale rough membranes (87.2-200nm), the neurons were less developed as demonstrated by the round-shaped soma and poorly branched processes. Therefore, the nanoscale rough membranes seem to be more supportive of neurite outgrowth modulating the development process of the neurons. For smaller cells, such as human vein endothelial cells, increasing surface roughness of biomaterial surfaces at nanometer scale (10–102nm) could enhance cell adhesion and growth on roughness surfaces (Chung et al., 2003). Furthermore, Kim et al. used the dendrimer-immobilized surfaces to study nanoscale modifications and discovered that the human mammary epithelial cells (hTERT-HME1) cultured on the naked dendrimer surface (4.0 nm) were abundant in F-actin filaments of peripheral stress fibers and filopodia, compared with those cultured on the plain surface (Kim et al., 2007). However, when the surface roughness was larger than 4.0 nm, such cell stretching was inhibited, resulting in the predominant existence of round-shaped cells. Similar investigation was also reported by Dalby in the development of F-actin filaments in fibroblasts (Dalby, 2005). Interestingly, MC3T3-E1 osteoblastic cells showed that the rate of proliferation on the smooth regions (0.55nm) of the films is much greater than that on the rough regions (13nm) (Washburn et al., 2004). Therefore, the selectivity of cells on surface roughness could be highly advantageous in the development of implanted devices.
2.5 Surface softness and stiffness

Surface stiffness is a measure of how soft (as silk) or stiff (as rock) a material's surface is. Several studies have reported that cell attachment, proliferation, and differentiation are all modulated by the substrate rigidity to a degree dependent upon the substrate stiffness in relation to the stiffness of the native tissue (Engler et al., 2006; Khatiwala et al., 2007). In addition, at the tissue-implant interface, cells can actively modify surfaces of the implants, altering the stiffness of microenvironment of their own or other cells (Marquez et al., 2006). Tan and Teoh demonstrated that 3T3 fibroblasts preferred soft surfaces for proliferation. Su group used the rheometer to measure the cell adhesion force of MDCK cells on different substrate softness. The results showed that the adhesion force of MDCK cells increased with the decrease of substrate softness and which is correlated to the cell spreading area. Engler prepared polyacrylamide (PA) gels with different softness to study the correlation between cell spreading area of smooth muscle cells and elastic modulus of substrates. Cell spreading was found remarkably dependent on elastic modulus of PA gel substrates. Therefore, the softness and stiffness of substrates may regulate the mechanism between cell-ECM and seem to correlate broadly with cell adhesion response.

A limited number of attempts have yielded exciting findings (Lahann & Langer, 2005; Mrksich, 2005), in which dynamic changes of surface softness and stiffness were induced largely through application of environmental factors (e.g. temperature, pH and electric field). As a result, a study in neuronal regeneration (Jiang et al., 2008) indicted that initial softer substrates foster axonal elongation and stiffening of the substrate at a later stage could encourage outgrowth of more primary dendrites of neurons, thus promoting synaptogenesis. Moreover, cells response to mechanical alterations as demonstrated in the cell projection area and polarity was found vary depending on range of stiffness changes (Jiang et al., 2010).
3. Cell responses on architecture of tissue engineering scaffolds

On a macroscopic level, the overall shape of the scaffold provides boundaries for tissue regrowth. On a microscopic level, the material provides a framework and capillary networks for local cell growth and tissue organization, permitting cell attachment, distribution and proliferation within a controllable microenvironment (Saltzman, 2002). Apart from tissue engineered skin and vascular grafts that have been progressed into clinical use, the most other tissue engineered human tissue or organs (e.g. liver and kidney) are still unsuccessful (Mikos et al., 2006). Simply produce a highly porous scaffold and cultivating it with the appropriate types of cells in most cases does not reproduce the desired feature of a normal tissue as tissue structure and function are known to be highly inter-related (Bhaia & Chen, 1999). Many tissues have a hierarchical structure that varies over length scales of 0.1-1mm (Griffith, 2002). The subcellular structures (1-10µm) control cell-cell inter-relationships and supracellular scale structures (100-1000µm) build the essential functional units of the tissue. In order to maintaining the activity of function cell, regulating cell behavior, and reconstructing 3-dimensional multicellular masses, scaffold must be optimized to satisfy cell and tissue growth including proper networks to provide fresh culture medium to all cells and remove metabolites from the cells and maintain the hierarchical cellular architectures to mimic the functional cells living environment. Altering the micro-architecture, such as the material crystallinity or the microporosity, and/or the macro-architecture of the scaffold can be achieved by changing the pores size, porosity, pore interconnectivity and tortuosity, to match the characteristics of the native tissue whilst retaining integrity (Hutmacher, 2001). A common problem encountered when using scaffolds in tissue engineering is the rapid cells attachment and proliferation on the outer edge of scaffold which restrict cell penetration to the scaffold center, resulting in a necrotic core (Freed et al., 1999). This can be addressed by altering the culture conditions use to growth tissue, for example using a flow perfusion culture system (Botchwey et al., 2001), but it is only relevant to tissue engineering in vitro. Another option or further method of addressing this is to design an optimized scaffold that will improve nutrient and cell transfer to the scaffold center, both in vitro and in vivo. As discussed in above, characterization of surface wettability, charges and softness; modification of surface chemistry by coating with adhesion molecules together with optimized the internal structure and architecture will all help to deal with this issue. Scaffold porosity in particular controls the key processes of nutrient supply to cells, metabolite dispersal, local pH stability and cell signaling. The size of the pores can affect how close the cells are at the initial stages of cultivation (allowing for cell-cell communication in three dimensions), but also influences the amount of space the cells have for 3-D organization in the later stages of tissue growth. In addition, a porous surface is known to improve mechanical interlocking between the implanted scaffolds and the surrounding natural tissue, providing greater mechanical stability at this critical interface (Karageorgiou & Kaplan, 2005). Cell seeding in the center of the scaffold and feeding the inner surfaces of the scaffolds are limited when the pores are too small whereas larger pores affect the stability of the scaffold and its ability to provide physical support for the seeded cells (Levenberg & Langer, 2004). To date cell seeding on 2-D scaffold surfaces has been shown to be easy to perform but the preparation of 3-D cell-scaffold constructs for regeneration of organs is far more complex. For example, pores of adequate size allow cells to migrate or adhere to the surface of a material, but interconnecting pores are necessary to permit cell growth into the scaffold interior.
3.1 Pore size of tissue engineering scaffold

Cell migration is modulated by a complex, spatiotemporally integrated set of biophysical mechanisms that are influenced not only by the biochemistry of extracellular and intracellular signaling, but also by the biophysics of the surrounding extracellular environment. Specific cells require different pore sizes for optimal attachment, growth and motility (Table 2) (Ranucci et al, 2000). A recent study (Yang et al., 2010) on variable pore size collagen gel found that cell migration is hindered by small pore size that invasive distance was not very sensitive in the pore size range of 5-12µm. At small pore size, a variety of factors, including high ligand density in collagen gel that does not encourage the cell polarity and release seen in mesenchymal migration likely contributes to the limited invasion (Ulrich et al., 2010) whilst very large pore size in scaffolds have insufficient tethers on which to generate traction would also limit cell migration. As a result, many researches in tissue engineering are aimed at obtaining polymeric or bioceramic scaffolds with a very high porosity and simultaneous good control over pore size and morphology (Hou et al., 2000). The presence of pores smaller than 160µm in PLA and PLGA scaffolds, produced by salt leaching, has been reported to be optimal for attachment of human skin fibroblasts (Yang et al., 2002). Bone ingrowth was found to predominate in porous PMMA implanted in bone when the pore size was around 450µm (Ashman & Moss, 1977). Connective tissue formed when the pore size was below 100µm and extensive vascular infiltration was only observed with pores around 10000µm. Infusion of polyurethane meniscal implants, structures comprising macropores (150-300 µm), highly interconnected by micropores (<50 µm) have been found to be conducive to ingrowth of fibrocartilaginous tissue (deGroot et al., 1996). The cell infiltration depth (120µm in 28 days) found in elastin scaffolds, for example, probably results from the material’s high porosity and inter-connectivity (Lu, Ganesan et al., 2004). Osteoblasts was found to migrate faster inside the larger pore (100µm) of microcellular polyHIPE scaffolds; however, pore size did not affect cell penetration depth or mineralization extent (Akay et al., 2004). It has also been noticed in previous studies that cell-scaffold binding can block pores of inadequate size and geometry (Freed & Vunjak-Novakovic, 1998; Yannas, 2000). High inter-connectivity of pores is also essential to supply nutrients and allows oxygen exchange in the inner regions of a scaffold to maintain cell viability, especially for complex tissue engineering of organs.

<table>
<thead>
<tr>
<th>Cell/tissue type</th>
<th>Optimal pore size (µm)</th>
<th>Scaffold material</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human skin fibroblasts</td>
<td><160µm</td>
<td>PLA/PLG</td>
<td>(Yang.J et al., 2002)</td>
</tr>
<tr>
<td>Bone</td>
<td>450µm</td>
<td>PMMA</td>
<td>(Ashman & Moss, 1977)</td>
</tr>
<tr>
<td>Fibrocartilaginous tissue</td>
<td>150-300µm</td>
<td>Polyurethane</td>
<td>(deGroot et al., 1996)</td>
</tr>
<tr>
<td>Adult mammalian skin cells</td>
<td>20-125µm</td>
<td>Collagen-glycosaminoglycan</td>
<td>(Yannas, Lee, Orgill, SKrabut, & Murphy, 1989)</td>
</tr>
<tr>
<td>Osteogenic cells</td>
<td>100-150µm</td>
<td>Collagen-GAG</td>
<td>(O’Brien, Harley, Yannas, & Gibson, 2005a)</td>
</tr>
<tr>
<td>Smooth muscle cells</td>
<td>60-150µm</td>
<td>PLA</td>
<td>(Zeltinger, Sherwood, Graham, Mueller, & Griffith, 2001)</td>
</tr>
<tr>
<td>Endothelial cells</td>
<td><80µm</td>
<td>Silicon nitride</td>
<td>(Salem et al., 2002)</td>
</tr>
</tbody>
</table>

Table 2. Optimal pore size for cell infiltration and host tissue ingrowth
3.2 Porosity of tissue engineering scaffold

The porosity, that is, the percentage of void volume in the materials, is also used as a means of quantifying the structure of a tissue engineering scaffold. Researches have been focusing on the design of the scaffold to ensure appropriate porosity and porous structure for cells penetration and ingrowth. However, attempts to link scaffold porosity to cell performance have not been particularly successful. Toth et al. (Toth et al., 1995) report that improvements in bone ingrowth occur with increasing porosity of macroporous biphasic calcium phosphate ceramic samples. However, they also report no discernible differences in bone union after six months implantation between scaffolds that have 30%, 50% and 70% porosity. This observation could be attributed to the complicated internal structure of scaffolds that consist of pores of different types (open, closed and blind-end pores), sizes and geometry, (Fig. 3). The presence of both random and anisotropic open porous architectures of PLA scaffolds were prepared using supercritical CO₂ aims to find the optimal channel diameter and geometry for osteosarcoma cell penetration. The results show that cells penetrate into scaffolds containing aligned channels (400µm) more extensively than those that did not.

3.3 Connectivity and tortuosity of tissue engineering scaffold

The pore structures typically consist of irregularly shaped voids and connecting channels (connects) that can be difficult to defined due to merging of adjacent cavities, resulting in the presence of fenestrations (windows) in the void walls. Beyond the fundamental requirements of adequate pore size and inter-connectivity, pore tortuosity also plays a key role in cells interaction with scaffolds. Tortuosity is defined as the ratio of the actual path length through connected pores to the Euclidean distance (shortest linear distance) (Fig.4). Tortuosity is another key factor in optimizing and designing tissue engineering scaffold which is known to influence molecules and oxygen diffusion and cell migration rate. Silva et al. reported (Silva et al., 2006) that aligned channel in both hydroxyapatite (HA) and poly(D,L-lactic acid) (PDLA) scaffolds enhanced cell penetration and infiltration into the central region of the scaffold in comparison with tortuous channels. Analysis of human osteosarcoma cell penetration into the aligned channels revealed that cell coverage increased with increasing channel diameter from around 22% in the 170µm diameter channel to approximately 38% into the 420µm channel (Rose et al., 2004). In addition, cell penetration into 420µm channel was significantly greater than that observed within the 170µm channel. However, determination of tortuosity and cell responses on tortuous scaffold is still rarely quoted in the literature. A common method to calculate tortuosity is via the results from dissolution measurements. In this method, the tortuosity is calculated from several parameters related to the dissolution of a molecules from a matrix (Desai et al., 1966; Foster & Parrott, 1990). This approach can result in unrealistic values of more than one thousand (Papadokostaki et al., 1998) or below one (Foster & Parrott, 1990). Tortuosity can also be measured from the porosity and diffusion coefficients obtained from spin echo NMR measurements (Wu et al., 2006). Mercury intrusion porosimetry has also been suggested for determining tortuosity. Another example of tortuosity calculating is to use the inflection count metric (ICM). This approach adds the number inflections of a 3-D frame representation of a pore connecting two points and multiplies this number by the path length (Bullitt et al., 2003). Wu et al. (Wu et al., 2006) described a method to find the shortest route through the pores in images of compacts using an algorithm called ‘grey-weighted
distance transform (GDT) which provide precise measurements of tortuosity. A recent study (Leber et al., 2010) showed that tortuous channels with 1 or 2 of 90° bends had faster osteoblasts growth than the control (non-bend). It could be hypothesize that the cell sidewall affinity could have contributed to this increase in cell quantity. These observations are in harmony with studies of osteoblast alignment with parallel grooves fabricated in various material surfaces, but expand the study to tortuous channels (Ber et al., 2005). No other reports have been noticed to show the relationship between cells attachment and migration with tortuous channels.

Fig. 3. Schematic of the different pore types found in tissue engineering scaffolds (Y. Wang et al., 2010)

Fig. 4. Determination of tortuosity through a porous material using the arc-chord ratio (O’Connell et al., 2010)

3.4 Cell responses to dynamic scaffolds
For biodegradable polymer scaffolds, polymers slowly degrade and then dissolve following implantation. The dissolution rates represent an additional and important parameter in determining the properties of the scaffolds and can be turned to the need of specific cell and tissue. For example, cells that proliferate rapidly require scaffolds with higher degradation rates, whereas tissue structures that require stability and strength may benefit from longer-lasting material (e.g. bone, skin and tendon).

Furthermore, biodegradable polymers may provide an additional level of control over cell responses: during polymer degradation, the surface of the polymer is constantly renewed, providing a dynamic substrate for cell attachment and growth. Cells do not live in static surroundings in this situation; they exist in highly evolving dynamic environment. During cell adhesion and migration, cells adapt and communicate to their environment by
numerous methods ranging from differentiation, gene expression, growth, and apoptosis. Dynamic substrates that can alter the presentation of ligands to an attached cell will generate immediate opportunities for studies of scaffolds-cell adhesion, signaling, migration and differentiation. Dynamic substrates may also be important for generating substrates that can control the spatial and temporal interactions between two or more different populations of attached cells in tissue engineering (Yousaf, 2009). However, much less effort has been invested in studying cell responses on dynamic substrates. Currently, there is no available method to generate dynamic gradient substrates for studying cell polarity and directed cell migration. One of recent studies found that programmed erasure of substrate topography cause a decrease in cell alignment as evidenced by an increase in angular dispersion with corresponding remodeling of the actin cytoskeleton. Cell viability remained greater than 95% before and after topography change (Davis et al., 2011).

Beyond the biodegradability, mechanical input on scaffolds also significant influence the reorientation of cell shape (J. Wang et al., 2003), actin cytoskeleton remodeling (J. Wang et al., 2000) and the synthesis of extracellular matrix (Carver et al., 1991). Many studies showed that cells are capable of surveying the external mechanical properties of their surrounding environment, respond to changes in the balance of intra- and extra- cellular forces, and regulate many important physiological proves (Pelham & Wang, 1997). As most tissue engineering scaffolds are made of biomaterials which have certain elasticity, rigidity and stretching-tension, cell responses to such scaffolds relate mechanical stimulation is becoming more and more interesting. In case of fibroblasts differentiation, mechanical stretching of silicone dishes can induce differentiation of fibroblasts into myofibroblasts, which is known to form scar tissue in vivo. Tock et al (Tock et al., 2003) reported that mechanical loading impressed α-SMA expression, a marker of myofibroblasts hat mechanical tension in granulation tissues controls myofibroblast differentiation (Hinz et al., 2001).

4. Challenges in studying cell behaviour on biomaterials and complex tissue engineering scaffolds

Cell adhesion to a material surface is an important phenomenon that controls the behavior of cells, such as their morphology, migration, growth and differentiation. Counting the cells adhered to material’s surface is the most common way to evaluate a material’s affinity to the cells but this method could not quantify the cell adhesion force on the material’s surface. Many studies used biological procedures to measure the characteristics of adhesion between cells and biomaterials. For example, cell spreading and migration are often used as indirect indicators of adhesion strength and this lack of quantitative understanding of adhesion strength limits the interpretation of functional studies of structural and signaling adhesive components. Studying cell adhesion molecules such as focal adhesion kinase involved the binding with biomaterial’s surface can provide more direct information about cell adhesion strength. However, protein expression is working on a population of cells and not a single cell due to the sensitivity of western blot or protein binding assay. Recently, a number of techniques have been developed to study the cell adhesion behavior on materials from mechanical point of view. For instance, cell adhesion strength has been studied as centrifugation force by centrifuge, tensile force by micropipette manipulation, shear force by parallel flow chamber and chemical binding force by atomic force microscope (Thoumine &
Ott, 1997; Truskey & Proulx, 1993; Leonenko et al., 2007). McClay and Lotz groups determined the cell detachment force under different speed of centrifugation and Bouafsoun et al. used flow chamber and jet impingement techniques to study cell detachment forces. However, centrifugation force by centrifuge and shear force by parallel flow chamber quantify the cell-material adhesion strength for a population of cells but not for an individual cell. Thus, tensile force by micropipette manipulation and chemical binding force by atomic force microscope (AFM) are the more suitable techniques to study the cell adhesion strength of a single cell on biomaterial surface. In 2009, Hung et al. utilized the dielectrophoresis force acting on the human bladder epithelial (ECV) cells to induce spatial movement for studying the cell adhesion strength. Dielectrophoresis is the phenomenon in which a particle, such as a living cell, is polarized and moved by the electrical gravity in a non-uniform electric field (Jones, 2005). In our study, dielectrophoresis force was also used to determine cell adhesion strength of human bladder epithelial cells on Fn and collagen type 1 coated surfaces and the cell adhesion force was similar to the one measured by AFM but much smaller than the one measured by flow chamber techniques. We suggested that the cell adhesion strength between a single cell and biomaterial surface would be different from a population of cells. Therefore, new trends and possible long-term directions for determining both adhesion process and force are highlighted.

For characterizing internal structure of tissue engineering scaffold and their correlation with cell behavior, a variety of techniques have been used to evaluate scaffold porosity including theoretical assessment, scanning electron microscopy (Flynn et al., 2006), mercury porosimetry, gas pycnometry and adsorption. SEM analysis complements the theoretical calculations of porosity (Kellomake et al., 2000; Walsh et al., 2001; Zein et al., 2002) and allows direct measurements of pore size and wall thickness and cell morphology on the surface. However, SEM cannot examine the scaffold interior without sample sectioning which introduces uncertainty due to unwanted material compression and edge effects and cells damage. Mercury porosimetry is a well known and established method, but it neither measures small mesopores (2-50nm pores) due to lack of mercury penetration nor measures very large pores as the mercury penetrates the structure before measurements can be made. The gas adsorption method is relevant to the study of porosity in nano-featured and nano-modified scaffolds (Ma, 2004), and is based on the electrical forces of attraction that bind atoms in solids. To counter the net inward attractive forces, surface atoms bind surrounding gas molecules via Van der Waals and electrical forces. Researchers have used gas adsorption to assess scaffolds with pore sizes ranging from 0.35-400 nm or 3.5 to 2000µm but the analysis does not evaluate closed pore content and cell proliferation or migration.

For analyzing the 3-D construction of tissue scaffolds and cell-material interactions, new imaging techniques such as micro-computed tomographic (micro-CT) have been developed. Feldkamp et al (Feldkamp et al., 1989) pioneered micro-CT imaging technology to analyze trabecular bone samples at a spatial resolution of 50µm. Since then, micro-CT has been used extensively in the study of bone architecture and other tissue types. Micro-CT images the specimen through exposure to small quantities of ionizing radiation and corresponding measurements of absorption. The resulting grey-scale images form a series of 2-D sequential slices which build up into a density map of the sample. With relevant computerized reconstruction, micro-CT provides precise quantitative and qualitative
information on the 3D morphology of specimens (Darling & Sun, 2004; Thurner et al., 2005; Thurner et al., 2004; Washburn et al., 2004; Williams et al., 2005) and the interior can be studied in great detail without resorting to physical sectioning or the use of toxic chemicals. Williams et al (Williams et al., 2005) recently used Micro-CT to visualize PCL scaffolds produced by selective laser sintering (SLS) and to assess the porosity and subsequent bone formation following cell seeding and implantation in mice. Micro-CT has also been used to quantify scaffold micro-architectural parameters related to compressive mechanical properties (Lin et al., 2003). Thurner et al (Thurner et al., 2005) explored X-ray Micro-CT for morphological characterization of cell cultures on filamentous 3-D scaffolds (Fig.5.) and Synchrotron Micro-CT has highlighted the subtlety of cell-scaffold interactions - fibroblasts tend to span between multi-filament yarns whereas osteoblast-like cells are confined to the filament surface (Thurner et al., 2004). Ongoing development of micro-CT techniques is improving qualitative and quantitative analysis of tissue engineering scaffolds. Jones et al (Jones et al., 2007) applied three algorithms to identify pores, interconnects and pore size distribution in bioceramic scaffolds to predict the permeability of the pore network and thus optimize bioreactor conditions for cell seeding.

Fig. 5. 3D visualization of human foreskin fibroblasts (A) and mouse calvarial osteoblast-like cells (B). Adhesive surface (right) (both yellow) on the yarn (red) (Thurner et al., 2005)

5. Conclusion

In order to prove clinically use, tissue engineering scaffolds must consider many surface properties and 3-D structure design to maintain cell attachment, proliferation and phenotype expression. Surface and bulk mechanics, control of the scaffold interface and cell biology are essential for the development of tissue engineering. Clinical research has been demonstrating the value of tissue engineering approach on in vivo therapies and will likely continue to use cellular biology and signaling pathways to assess the corrections between tissue engineering and organ repair. Hence, testing cell response to tissue engineering scaffolds in vivo will provide better understanding host-implant response in vivo environment.

6. References

Yang, J., Shi, G., Bei, J., Wang, S., Cao, Y., Shang, Q., et al. (2002). Fabrication and surface modification of macroporous poly(L-lactic acid) and poly(L-lactic co-glycolic acid) (70/30) cell scaffolds for human skin fibroblasts cell culture. Journal of Biomedical Materials Research, 62, 438-446.

